PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Techniki zgłębiania danych w prognozowaniu wytrzymałości na ściskanie betonu z dodatkiem popiołu lotnego

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Prediction of compressive strength of concrete containing fly ash using data mining techniques
Języki publikacji
PL EN
Abstrakty
PL
Wytrzymałość betonu na ściskanie jest najczęściej wykorzystywaną właściwością mechaniczną przy projektowaniu konstrukcji betonowych. Z tego względu stosowanie adekwatnych modeli do ich przewidywania może odegrać ważną rolę w ekonomicznych realizacjach w przemyśle budowlanym. W pracy zastosowano różne metody zgłębiania danych w celu prognozowania wpływu fizykochemicznych właściwości dodatku popiołu lotnego do betonu na jego wytrzymałość na ściskanie. Otrzymane wyniki pokazują, że wytrzymałość na ściskanie betonu z dodatkiem popiołu lotnego można dobrze przewidywać przy zastosowaniu maszyny wektorów nośnych. Trzeba jednak zauważyć, że zgodnie z tym modelem wpływ fizykochemicznych właściwości popiołu lotnego na wytrzymałość na ściskanie betonu wydaje się być nieznaczny.
EN
The concrete compressive strength is the most used mechanical property in the designing of concrete structures. Therefore, the use of rational models to its prediction can play an important role in the achievement of the safety-economy building. In the paper the different Data Mining techniques were applied to forecast the importance of chemical-physical properties of fly ash addition on concrete compressive strength. The obtained results have shown that the compressive strength of concrete containing fly ash can be correctly forecasted applying support vector machine. However, according to this model, the influence of FA chemical-physical properties on compressive strength of concrete seems to be marginal.
Czasopismo
Rocznik
Strony
39--51
Opis fizyczny
Bibliogr. 41 poz., il., tab.
Twórcy
  • Department of Civil Engineering, University of Minho, Guimarães, Portugalia
autor
  • Department of Civil Engineering, University of Minho, Guimarães, Portugalia
Bibliografia
  • 1. ACI Committee 232, Use of fly ash in concrete. ACI committee report 232.2R-96. ACI, April, p. 34 (1996).
  • 2. ACI Committee 363, State-of-the-art report on high strength concrete. ACI committee report 363R-92. ACI, September, p. 55 (1992).
  • 3. J. L. Alonso, K. Wesche, Characterization of fly ash. Fly ash in concrete: properties and performance, Report of technical committee 67-FAB – use of fly ash in building (K. Wesche ed.) RILEM, E&FN SPON, pp. 3-23 (1991).
  • 4. A. Camões, (2002). High performance concrete incorporating fly ash, PhD Thesis, University of Minho, p. 456 (2002).
  • 5. B.-T. Chen, T.-P. Chang, J.-Y. Shih, J.-J. Wang, Estimation of exposed temperature for fire-damaged concrete using support vector machine. Computational Materials Science, 44, 3, pp. 913-920 (2009).
  • 6. C. Cortes, V. Vapnik, Support vector networks. Machine Learning. Kluwer Academic Publishers, 20, 3, pp. 273-297 (1995).
  • 7. P. Cortez, Data mining with neural networks and support vector machines using the R/rminer Tool. Proceedings of 10th Industrial Conference on Data Mining, Advances in Data Mining, Applications and theoretical aspects. (P. Perner (ed.). Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 572-583 (2010).
  • 8. Day, W. Ken, Concrete mix design, quality control and specification. E&FN SPON, p. 350, London 1995.
  • 9. B. Efron, R. Tibshirani, In An Introduction to the Bootstrap. Chapman & Hall 1993.
  • 10. U. Fayyad, G. Piatesky-Shapiro, P. Smyth, From data mining to knowledge discovery: an overview. In Advances in Knowledge Discovery and Data Mining (Fayyad et al. eds.). AAAI Press / The MIT Press, Cambridge MA, pp. 471-493 (1996).
  • 11. E. Giergiczny, Z. Giergiczny, Cement Wapno Beton, 77, 157 (2010).
  • 12. S. M. Gupta, Support vector machines based modelling of concrete strength. Engineering and Technology, Word Academy of Science, 36, pp. 305-311 (2007).
  • 13. W. Halstead, Use of fly ash in concrete. Transportation research board publication nº 127, Washington, p. 66, 1986.
  • 14. S. Haykin, Neural networks - a comprehensive foundation. 2nd ed. New Jersey: Prentice-Hall 1999.
  • 15. K. Hechenbichler, K. Schliep, Weighted k-nearest-neighbor techniques and ordinal classification. Discussion Paper 399, SFB 386, Ludwig-Maximilians University Munich 2004. Available from: <http://epub.ub.uni-muenchen.de/archive/00001769/01/paper_399.pdf>. [Accessed 7 August 2010]
  • 16. S. Jalali, A study of factors affecting the mechanical behaviour of lime-fly ash mixtures. Coventry Polytechnic, PhD Theses, February, p. 411, 1991.
  • 17. R. C. Joshi, R. P. Lohtia (1997). Fly ash in concrete: production, properties and uses, Advances in Concrete Technology (V. M. Malhotra ed.), Volume 2, Gordon and Breach Science Publishers, p. 269, Ottawa, Ontario, Canada 1997.
  • 18. J. Kasperkiewicz, J. Racz, A. Dubrawski, HPC strength prediction using artificial neural network. Journal of Computing in Civil Engineering, 9, 4, pp. 279-284 (1995).
  • 19. R. Kewley, M. Embrechts, C. Brenemam, (2000). Data strip mining for the virtual design of pharmaceuticals with neural networks. IEEE Transations on Neural Networks, 11, 3, pp. 668-679 (2000).
  • 20. J. I. Kim, D. K. Kim, Application of neural networks for estimation of concrete strength. KSCE Journal of Civil Engineering, 6, 4, pp. 429-438 (2002).
  • 21. J. K. Kim, Y. D. Park, K. Y. Sung, S. G. Lee, The production of high-strength fly ash in Korea. 4th CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete (V.M. Malhotra ed.), Supplementary papers, Istanbul. May 1992.
  • 22. S. Lai, M. Serra, Concrete strength prediction by means of neural network. Construction and Building Materials, 11, 2, 93-98 (1997).
  • 23. V. M. Malhotra, A. A. Ramezanianpour, Fly ash in concrete. 2nd edition, CANMET – Canada Centre for Mineral and Energy Technology, pp. 307, 1994.
  • 24. P. K. Mehta, Influence of fly ash characteristics of the strength of Portland fly ash mixtures. Cement and concrete research, Elsevier Science Ltd, Volume 15, Number 4, pp. 669-674, 1985.
  • 25. D. Meyer, Support Vector Machines. The interface to libsvm in package e1071, 2010. Available from: http://cran.r-project.org/web/packages/e1071/vignettes/svmdoc.pdf. [Accessed 7 August 2010].
  • 26. S. Mindess, (1994). Materials selection, proportioning and quality control. High performance concretes and applications (S.P. Shah and S.H. Ahmad ed.), Edward Arnold, pp. 1-25, London 1994.
  • 27. P. Naproux, Les microcendres (cendres volantes traitées) et leur employ dans les bétons hydrauliques. PhD Thesis. Institut National de Sciences Appliquées de Toulouse, France 1994.
  • 28. A. M. Neville, (1995). Properties of concrete, Fourth edition, Longman Group Limited, p. 844, England 1995.
  • 29. H.-G. Ni, J.-Z. Wang, Prediction of compressive strength of concrete by neural networks. Cement and Concrete Research 30, 1245-1250 (2000).
  • 30. F. Özcan, C. D. Atiş, O. Karahan, E. Uncuoğlu, H. Tanyildizi, Comparison of artificial neural network and fuzzy logic models for predicting of long-term compressive strength of silica fume concrete. Advances in Engineering Software, 40, pp. 856-863 (2009).
  • 31. J. Quinlan, Induction of Decision Trees. Machine Learning, Kluwer Academic Publishers 1, pp. 81-106, 1986.
  • 32. R Development Core Team. (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-00-3. Available from: <http://www.R-project.org>. [Accessed 7 August 2010].
  • 33. Ruan Xiang, Prediction of concrete carbonation depth based on support vector regression. Third International Symposium on Intelligent Information Technology Application, iita, vol. 3, pp. 172-175, 2009.
  • 34. M. Saridemir, Prediction of compressive strength of concretes containing metakaolin and silica fume by artificial neural networks. Advances in Engineering Software, 40, pp. 350-355 (2009).
  • 35. R. Swamy, Fly ash and slag: standards and specifications – help or hindrance? Materials and structures / Matériaux et constructions, 26, pp. 600-613 (1993).
  • 36. I. B. Topçu, M. Saridemir, Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic. Computation Materials Science, 41, pp. 305-311 (2008).
  • 37. V. Waller, P. Naproux, F. de Larrard, Contribution des fumées de silice et des cendres volantes silico-alumineuses à la résistance en compression du béton. Quantification. Bulletin des Laboratoires des Ponts et Chaussées. 208. Mars-Avril – réf. 4098, pp. 53-65, 1997.
  • 38. K. Wesche, Fly ash in concrete: properties and performance. Report of technical committee 67-FAB – use of fly ash in building (K. Wesche ed.) RILEM, E&FN SPON, pp. 3-23, 1991.
  • 39. D.-S. Yang, S.-K. Park, J.-H. Lee, A prediction on mix proportion factor and strength of concrete using neural network. KSCE Journal of Civil Engineering, 7 (5), pp. 525-536 (2003).
  • 40. M. H. F. Zarandi, I. B. Türksen, J. Sobhani, A. A. Ramezanianpour, Fuzzy polynomial neural networks for approximation of the compressive strength of concrete. Applied Soft Computing, 8, 488-498, (2008).
  • 41. L. Zhitao, H. Hongming, Z. Shengli, Research on support vector machine’s prediction of concrete carbonization. International Seminar on Business and Information Management, isbim, vol. 1, pp. 319-322, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf0d6827-2054-44b9-92fd-c5b7f94abaea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.