PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sensitivity Analysis for Influence Parameters of Rail Corrugation Characteristics in Metro Straight Section

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on the theory of friction self-excited vibration and the measured data of rail corrugation, the cause of rail corrugation in metro straight section was analyzed. Then, using the stochastic finite element method, the sensitivity of each parameter to rail corrugation was studied by selecting the elastic modulus E1 and density ρ1 of the wheel-rail material, the elastic modulus E2 and density ρ2 of the track slab material, the wheel-rail coefficient of friction f, the fastener vertical stiffness K and vertical damping C, the wheel-rail longitudinal relative slip s as the random parameters. The results show that under the support of Cologne egg fastener track, the characteristic frequency of friction self-excited vibration of wheel-rail system is close to the characteristic frequency of measured corrugation, indicating that the occurrence of rail corrugation is related to the friction self-excited vibration of wheel-rail system under the condition of saturated creep force. The parameter sensitivity analysis illustrates that the influence degree of each random parameter on the real part αi of complex eigenvalue is E1>ρ1>C>E2>ρ2>f>K>s in turn. E1, C and s are positively correlated with the real part αi of complex eigenvalue, while the remaining 5 parameters are negatively correlated with the real part αi of complex eigenvalue. Therefore, appropriate decrease of E1, C and s, and increase of ρ1, E2, ρ2, f and K can play a positive role in the control of rail corrugation.
Twórcy
autor
autor
  • Institute of Rail Transit, Tongji University, Shanghai, China
Bibliografia
  • 1. Grassie S.L., Kalousek J. Rail corrugation: characteristics, causes and treatments. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 1993;207(1):57–68.
  • 2. Sato Y., Matsumoto A., Knothe K. Review on rail corrugation studies. Wear. 2002;253(1–2):130–139.
  • 3. Grassie S.L. Rail corrugation: characteristics, causes, and treatments. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 2009;223(6):581–596.
  • 4. Oostermeijer K.H. Review on short pitch rail corrugation studies. Wear. 2008;265(9–10):1231–1237.
  • 5. Vadillo E.G., Tárrago J., Zubiaurre G.G., Duque C.A. Effect of sleeper distance on rail corrugation. Wear. 1998;217(1):140–145.
  • 6. Wu T.X. Effects on short pitch rail corrugation growth of a rail vibration absorber/damper. Wear. 2011; 271(1–2):339–348.
  • 7. Egana J.I., Vinolas J., Seco M. Investigation of the influence of rail pad stiffness on rail corrugation on a transit system. Wear. 2006;261(2):216–224.
  • 8. Chen, G.X., Qian, W.J., Mo J.L., Zhu M.H. Influence of the rail pad stiffness on the occurrence propensity of rail corrugation. Journal of Vibration Engineering and Technologies. 2016;4(5):455–458.
  • 9. Liu X.G., Wang P. Investigation of the generation mechanism of rail corrugation based on friction induced torsional vibration. Wear. 2021;468– 469:203593.
  • 10. Lei Z.Y., Wang Z.Q. Generation mechanism and development characteristics of rail corrugation of Cologne egg fastener track in metro. KSCE Journal of Civil Engineering. 2020;24(6):1763–1774.
  • 11. Wu B.W., Chen G.X., Lv J.Z., Zhu Q., Kang X. Generation mechanism and remedy method of rail corrugation at a sharp curved metro track with Vanguard fasteners. Journal of Low Frequency Noise Vibration and Active Control. 2020;39(2):368–381.
  • 12. El Beshbichi O., Wan C., Bruni S., Kassa E. Complex eigenvalue analysis and parameters analysis to investigate the formation of railhead corrugation in sharp curves. Wear. 2020;450–451:203150.
  • 13. Song X.L., Qian Y., Wang K.Y., Liu P.F. Effect of rail pad stiffness on vehicle-track dynamic interaction excited by rail corrugation in metro. Transportation Research Record. 2020;2674(6):225–243.
  • 14. Wang Z.Q., Lei Z.Y. Parameter influences on rail corrugation of metro tangential track. International Journal of Structural Stability and Dynamics. 2021;21(3):2150034.
  • 15. Yin X.X., Wei X.K., Zheng H.C. Applying system dynamics of discrete supported track to analyze the rail corrugation causation on curved urban railway tracks. Discrete Dynamics in Nature and Society. 2021;9958163.
  • 16. Chen G.X., Zhou Z.R., Ouyang H., Jin X.S., Zhu M.H., Liu Q.Y. A finite element study on rail corrugation based on saturated creep force-induced self-excited vibration of a wheelset-track system. Journal of Sound and Vibration. 2010;329(22):4643–4655.
  • 17. Cui X.L., Chen G.X., Zhao J.W., Yan W.Y., Ouyang H., Zhu M.H. Field investigation and numerical study of the rail corrugation caused by frictional self-excited vibration. Wear. 2017;376(B):1919–1929.
  • 18. Chen G.X., Zhang S., Wu B.W., Zhao X.N., Wen Z.F., Ouyang H., Zhu M.H. Field measurement and model prediction of rail corrugation. Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit. 2020;234(4):381–392.
  • 19. Cui X.L., Qian W.J., Zhang Q., Yang H.G., Chen G.X., Zhu M.H. Forming mechanism of rail corrugation of a straight track section supported by Cologne-egg fasteners. Journal of Vibration and Shock. 2016;35(13):114–118+152.
  • 20. Wang Z.Q., Lei Z.Y. Analysis of influence factors of rail corrugation in small radius curve track. Mechanical Sciences. 2021;12:31–40.
  • 21. Chen G.X. Friction-induced vibration of a railway wheelset-track system and its effect on rail corrugation. Lubricants. 2020;8,18.
  • 22. Li X. Study on the mechanism of rail corrugation on subway track. PhD Dissertation, Southwest Jiaotong University, Chengdu, 2012.
  • 23. AbuBakar A.R., Ouyang H. Complex eigenvalue analysis and dynamic transient analysis in predicting disc brake squeal. International Journal of Vehicle Noise and Vibration. 2006;2(2):143–155.
  • 24. Li W. Study on root cause of metro rail corrugation and its influence on behavior of vehicle-track system. PhD Dissertation, Southwest Jiaotong University, Chengdu, 2015.
  • 25. Lei Z.Y., Liu M. Waterproofness optimization for elastic rubber gaskets in shield tunnels with random parameters. Applied Mathematics and Mechanics. 2017;38(8):899–910.
  • 26. Lei Z.Y., Liu M. Sensitivity analysis of water-proof performance of elastic rubber gasket in shield tun¬nel. Journal of Tongji University (Natural Science). 2017;45(3):336–341.
  • 27. Lei Z.Y., Wang Z.Q., Jiang Z. Stress relaxation characteristics of rubber gasket under effect of random parameters. Journal of Tongji University (Natural Science). 2019;47(4):535–539.
  • 28. Wang T. Infrared small target detection based on Spearman rank correlation coefficient. Science Technology and Engineering. 2017;17(2):234–238.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf0d208f-ebc5-4e9a-8217-52b9271c6a28
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.