PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on surface modification of cerussite by thermochemical processing with pyrite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, surface modification of cerussite by thermochemical processing with pyrite was studied based on microflotation tests, X-ray powder diffractometry (XRD), X-ray photoelectron spectroscopy (XPS) and electron probe microanalysis (EPMA). Microflotation test results showed that the surface modification facilitated flotation of the treated cerussite and improved the flotation recovery to approximately 90%. The results of XRD analyses confirmed that cerussite was transformed into massicot, which then interacted with pyrite to form PbS, PbSO4, PbO•PbSO4 and 4PbO•PbSO4. XPS analyses results revealed that both PbS and PbS2 were formed on the mineral surface, and the percentage of PbS increased with increasing FeS2/PbCO3 (F/P) mole ratio, which was advantageous for the flotation of the modified cerussite. EPMA analyses showed that particles with layered configurations were obviously formed after thermochemical processing. The thickness of the products at the outer layer of the particles increased when the F/P mole ratio increased. Moreover, the S and O contents in the products increased and decreased, respectively.
Rocznik
Strony
156--167
Opis fizyczny
Bibliogr. 40 poz., rys., wykr.
Twórcy
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
  • Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
autor
  • Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
Bibliografia
  • BAI, S., LI, C., FU, X., LIU, J., WEN, S., 2018. Characterization of Zinc Sulfide Species on Smithsonite Surfaces During Sulfidation Processing: Effect of Ammonia Liquor. J. Ind. Eng. Chem. 61, 19-27.
  • BUCKLEY, A., GOH, S., LAMB, R., WOODS, R., 2003. Interaction of Thiol Collectors with Pre-oxidised Sulfide Minerals. Int. J. Miner. Process. 72(1-4), 163-174.
  • CHASTAIN, J., 1992 Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corporation. 40, 221.
  • CHEN, L.Z., WANG, C.B., ZHENG, Y.X., LV, J.F., LAI, Z.N., PANG, J., 2019. Flotation of A Low-Grade Zinc Oxide Ore After Surface Modification at High Temperature. JOM. 71(9), 3166-3172.
  • COZZA, C., DI CASTRO, V., POLZONETTI, G., MARABINI, A., 1992 An X-ray Photoelectron Spectroscopy (XPS) Study of the Interaction of Mercapto-benzo-thiazole With Cerussite. Int. J. Miner. Process. 34(1-2), 23-32.
  • FENG, Q., WEN, S., ZHAO, W., DENG, J., XIAN, Y., 2016. Adsorption of Sulfide Ions on Cerussite Surfaces and Implications for Flotation. Appl. Surf. Sci. 360, 365-372.
  • FUERSTENAU, M., OLIVAS, S., HERRERA-URBINA, R., HAN, K., 1987. The Surface Characteristics and Flotation Behavior of Anglesite and Cerussite. Int. J. Miner. Process. 20(1-2), 73-85.
  • GOLSHEIKH, A.M., HUANG, N., LIM, H., CHIA, C.H., HARRISON, I., MUHAMAD, M., 2013. One-pot Hydrothermal Synthesis and Characterization of FeS2 (pyrite)/graphene Nanocomposite. Chem. Eng. J. 218, 276-284.
  • GUPTA, S.M., KULKARNI, A.R., VEDPATHAK, M., KULKARNI, S.K., 1996. Surface Study of Lead Magnesium Niobate Ceramic Using X-ray Photoelectron Spectroscopy. Mater. Sci. Eng. B, 39(1), 34-40.
  • GUSH, J., 2005. Flotation of Oxide Minerals by Sulphidization-the Development of A Sulphidization Control System for Laboratory Testwork. J. South. Afr. Inst. Min. Metall. 105(3), 193-198.
  • HERRERA-URBINA, R., SOTILLO, F., FUERSTENAU, D., 1998. Amyl Xanthate Uptake by Natural and Sulfide-treated Cerussite and Galena. Int. J. Miner. Process. 55(2), 113-128.
  • IKUMAPAYI, F., MAKITALO, M., JOHANSSON, B., RAO, K.H., 2012. Recycling of Process Water in Sulphide Flotation: Effect of Calcium and Sulphate Ions on Flotation of Galena. Miner. Eng. 39, 77-88.
  • IVANOV, I., STEFANOV, Y., NONCHEVA, Z., PETROVA, M., DOBREV, T., MIRKOVA, L., VERMEERSCH, R., DEMAEREL, J.P., 2000. Insoluble Anodes Used in Hydrometallurgy: Part II. Anodic Behaviour of Lead and Lead-alloy Anodes. Hydrometallurgy. 57(2), 125-139.
  • JIA, Y., HUANG, X., HUANG, K., WANG, S., CAO, Z., ZHONG, H., 2019. Synthesis, Flotation Performance and Adsorption Mechanism of 3-(ethylamino)-N-phenyl-3-thioxopropanamide onto Galena/sphalerite Surfaces. J. Ind. Eng. Chem. 77,416-425.
  • KANNAN, K., MUTHURAMAN, G., MOON, I.S., 2014. Controlled Synthesis of Highly Spherical Nano-PbO2 Particles and Their Characterization. Mater. Lett. 123, 19-22.
  • KORSHIN, G.V., FERGUSON, J.F., LANCASTER, A.N., 2000. Influence of Natural Organic Matter on the Corrosion of Leaded Brass in Potable Water. Corros. Sci. 42(1), 53-66.
  • LARA, R.H., BRIONES, R., MONROY, M.G., MULLET, M., HUMBERT, B., DOSSOT, M., NAJA, G.M., CRUZ, R., 2011. Galena Weathering under Simulated Calcareous Soil Conditions. Sci. Total Environ. 409(19), 3971-3979.
  • LI, C.X., WEI, C., SONG, Y., DENG, Z.G., LIAO, J.Q., XU, H.S., LI, M.T., LI, X.B., 2012. Hydrothermal sulfidation of white lead with elemental sulfur, Adv. Mater. Res. 396-398, 624-630.
  • LI, Y., WANG, J.-K., WEI, C., LIU, C.-X., JIANG, J.-B., WANG, F., 2010. Sulfidation Roasting of Low Grade Lead–zinc Oxide Ore With Elemental Sulfur. Miner. Eng. 23(7), 563-566.
  • Li, ZH., CHEN, M., HUANG, P.-W., ZHANG, Q.-W., SONG, S.-X., 2017. Effect of Grinding with Sulfur on Surface Properties and Floatability of Three Nonferrous Metal Oxides. Trans. Nonferrous Met. Soc. China. 27(11), 2474-2480.
  • LIANG, Y.J., CHAI, L.Y., LIU, H., MIN, X.B., MAHMOOD, Q., ZHANG, H.-J., KE, Y., 2012. Hydrothermal Sulfidation of Zinc-containing Neutralization Sludge for Zinc Recovery and Stabilization. Miner. Eng. 25(1), 14-19.
  • LV, W., YU, D., WU, J., ZHANG, L., XU, M., 2015. The Chemical Role of CO2 in Pyrite Thermal Decomposition. Proc. Combust. Inst. 35(3), 3637-3644.
  • MALGHAN, S., 1986. Role of Sodium Sulfide in the Flotation of Oxidized Copper, Lead, and Zinc Ores. Min., Metall., Explor. 3(3), 158-163.
  • MAY, G.J., DAVIDSON, A., MONAHOV, B., 2018. Lead Batteries for Utility Energy Storage: A Review. J. Energy. Storage. 15, 145-157.
  • MIKHLIN, Y.L., KARACHAROV, A.A., LIKHATSKI, M.N., 2015. Effect of Adsorption of Butyl Xanthate on Galena, PbS, and HOPG Surfaces as Studied by Atomic Force Microscopy and Spectroscopy and XPS. Int. J. Miner. Process. 144, 81-89.
  • NOWAK, P., LAAJALEHTO, K., 2007. On the Interpretation of the XPS Spectra of Adsorbed Layers of Flotation Collectorsethyl Xanthate on Metallic Lead. Physicochem. Probl. Miner. Process. 41, 107-116.
  • NOWAK, P., LAAJALEHTO, K., KARTIO, I., 2000. A Flotation Related X-ray Photoelectron Spectroscopy Study of the Oxidation of Galena Surface. Colloids Surf., A. 161(3), 447-460.
  • POWELL, K.J., BROWN, P.L., BYRNE, R.H., GAJDA, T., HEFTER, G., LEUZ, A.-K., SJoBERG, S., WANNER, H., 2013. Chemical Speciation of Environmentally Significant Metals with Inorganic Ligands. Part 5: The Zn2+, OH–, Cl–, CO32–, SO4 2–, and PO43–Systems (IUPAC Technical Report). Pure Appl. Chem. 85(12), 2249-2311.
  • ROINE, A., 2002. Outokumpu HSC chemistry for windows: Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database. Pori: Outokumpu research OY.
  • SHARONOV, M.Y., BYKOV, A., PETRICEVIC, V., ALFANO, R., 2008. Spectroscopic Study of Optical Centers Formed in Bi-, Pb-, Sb-, Sn-, Te- and In-doped Germanate Glasses. Opt. Lett. 33(18), 2131-2133.
  • SHIROTA, Y., NIKI, K., SHINDO, H., 2011. Stabilities of Crystal Faces of Aragonite-type Strontianite (SrCO3) and Cerussite (PbCO3) Compared by AFM Observation of Facet Formation in Acid. J. Cryst. Growth. 324(1), 190-195.
  • SMART, R.S.C., SKINNER, W.M., GERSON, A.R., 1999. XPS of Sulphide Mineral Surfaces: Metal-deficient, Polysulphides, Defects and Elemental Sulphur. Surf. Interface Anal. 28(1), 101-105.
  • TANG, Y.-Y., BI, X.-W., FAYEK, M., HU, R.-Z., WU, L.-Y., ZOU, Z.-C., FENG, C.-X., WANG, X.-S., 2014. Microscale Sulfur Isotopic Compositions of Sulfide Minerals from the Jinding Zn–Pb Deposit, Yunnan Province, Southwest China. Gondwana Research. 26(2), 594-607.
  • WANG, C., DENG, J., CARRANZA, E.J.M., LAI, X., 2014. Nature, Diversity and Temporal–spatial Distributions of Sediment-hosted Pb―Zn deposits in China. Ore Geol. Rev. 56, 327-351.
  • WANG, X., QIN, W., JIAO, F., LIU, R., WANG, D., 2019. Inhibition of Galena Flotation by Humic Acid: Identification of the Adsorption Site for Humic Acid on Moderately Oxidized Galena Surface. Miner. Eng. 137, 102-107.
  • YUAN, W., LI, J., ZHANG, Q., SAITO, F., 2012. Mechanochemical Sulfidization of Lead Oxides by Grinding with Sulfur. Powder Technol. 230, 63-66.
  • ZHENG, Y.X., LIU, W., QIN, W.Q., JIAO, F., HAN, J.W., YANG, K., LUO, H.L., 2015. Sulfidation Roasting of Lead and Zinc Carbonate with Sulphur by Temperature Gradient Method. J. Cent. South Univ. 22(5), 1635-1642.
  • ZHENG, Y.X., LV, J.F., WANG, H., WEN, S.M., HUANG, L., 2018a. Efficient sulfidization of lead oxide at high temperature using pyrite as vulcanizing reagent. Physicochem. Probl. Miner. Process. 54(2), 270-277.
  • ZHENG, Y.X., LV, J.F., WANG, H., WEN, S.M., PANG, J., 2018b. Formation of zinc sulfide species during roasting of ZnO with pyrite and its contribution on flotation. Sci. Rep. 8(1), 7839.
  • ZHOU, J., ZHAO, H., SHI, J., CHEN, Q., SHEN, X., 2014. Radiolytic Synthesis of Prismatical PbSO4 Microcrystals. Radiat. Phys. Chem. 97, 366-369.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf0c59c4-ebec-4d0e-9c24-d21bd69d9a42
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.