PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Cost-effective titania layers over 100 nm thick : effect of annealing on the structural, morphological, and optical properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Titania dioxide (TiO₂) layers were synthesized via the acid-catalysed sol-gel route using titania (IV) ethoxide, and then annealed at temperatures varying in the range of 150-700 °C. The research concerned the effect of annealing temperature on the structure of TiO₂ layers, their surface morphology, and their optical properties. Further, X-ray diffractometry, and Raman spectroscopy were used to determine the structure of TiO₂ layers. Scanning electron and atomic force microscopy were used to study the surface morphology of TiO₂ layers. Transmittance, reflectance, absorption edge, and optical homogeneity were investigated by UV-VIS spectrophotometry, while the refractive index and thicknesses of TiO₂ layers were measured using a monochromatic ellipsometer. Chromatic dispersion characteristics of the complex refractive index were determined using spectroscopic ellipsometry. Structural studies have shown that the TiO₂ layers annealed at temperatures up to 300 °C are amorphous, while those annealed at temperatures exceeding 300 °C are polycrystalline containing only anatase nanocrystals with sizes increasing from 6 to 20 nm with the increase of the annealing temperature. Investigations on the surface morphology of TiO₂ layers have shown that the surface roughness increases with the increase in annealing temperature. Spectrophotometric investigations have shown that TiO₂ layers are homogeneous and the width of the indirect optical band gap varies with annealing temperature from 3.53 eV to 3.73 eV.
Rocznik
Strony
art. no. e147913
Opis fizyczny
Bibliogr. 57 poz., rys., wykr.
Twórcy
  • Department of Optoelectronics. Silesian University of Technology, ul. B. Krzywoustego 2, 44-100 Gliwice, Poland
  • Department of Optoelectronics. Silesian University of Technology, ul. B. Krzywoustego 2, 44-100 Gliwice, Poland
autor
  • Department of Physics, Cracow University of Technology, ul. Podchorążych 1, 30-084 Kraków, Poland
  • Department of Physics, Cracow University of Technology, ul. Podchorążych 1, 30-084 Kraków, Poland
  • Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
  • Faculty of Materials Science and Ceramics AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
  • Faculty of Materials Science and Ceramics AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
  • Faculty of Materials Science and Ceramics AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Department of Optoelectronics. Silesian University of Technology, ul. B. Krzywoustego 2, 44-100 Gliwice, Poland
  • Department of Optoelectronics. Silesian University of Technology, ul. B. Krzywoustego 2, 44-100 Gliwice, Poland
Bibliografia
  • [1] Miao, L. et al. Microstructure and bactericidal ability of photo-catalitic TiO2 thin films prepared by rf helicon magnetron sputtering. Appl. Surf. Sci. 238, 125-131 (2004). https://doi.org/10.1016/j.apsusc.2004.05.193.
  • [2] Liu, W., Zou, B., Zhao, J. & Cui, H. Optimizing sol-gel infiltration for the fabrication of high-quality titania inverse opal and its photocatalytic activity. Thin Solid Films 518, 4923-4927(2010). https://doi.org/10.1016/j.tsf.2010.02.043.
  • [3] Guo, Q., Zhou, C., Ma, Z. & Yang, X. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv. Mater. 31, 1901997 (2019). https://doi.org/10.1002/adma.201901997.
  • [4] Al-Mamun, M. R., Kader, S., Islam, M. S. & Khan, M. Z. H. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile waste water treatment: A review. J. Environ. Chem. Eng. 7, 103248 (2019). https://doi.org/10.1016/j.jece.2019.103248.
  • [5] Lukong, V. T., Ukoba, K. & Jen, T.-Ch. Review of self-cleaning TiO2 thin films deposited with spin coating. Int. J. Adv. Manuf. Technol. 122, 3525-3546 (2022). https://doi.org/10.1007/s00170-022-10043-3.
  • [6] Zhao, W. et al. Sol-gel synthesis of TiO2-SiO2 hybrid films with tunable refractive index for broadband antireflective coatings covering the visible range. J. Sol-Gel. Sci. Technol. 107, 105-121 (2023). https://doi.org/10.1007/s10971-021-05719-3.
  • [7] Skolik, M., Domanowska, A., Karasiński, P., Gondek, E. & Michalewicz, A. Double layer sol-gel derived antireflective coatings on silicon - Design, optical and Auger electron spectroscopy characterization. Mater. Lett. 251, 210-213 (2019). https://doi.org/10.1016/j.matlet.2019.05.071.
  • [8] Gondek, E. & Karasiński, P. One-dimensional photonic crystals as selective back reflectors. Opt. Laser Technol. 48, 438-446 (2013). https://doi.org/10.1016/j.optlastec.2012.11.012.
  • [9] Dinh, N. N., Oanh, N. Th. T., Long, P. D., Bernard M. C. & Hugot-Le Goff, A. Electrochromic properties of TiO2 anatase thin films prepared by a dipping sol-gel method. Thin Solid Films 423, 70-76 (2003). https://doi.org/10.1016/S0040-6090(02)00948-3.
  • [10] Honda, T. et al. Optically pumped ZnSe-based vertical cavity surface emitter with SiO2/TiO2 multilayer reflector. J. Appl. Phys. 78, 4784-4786 (1995). https://doi.org/10.1063/1.359758.
  • [11] Hu, W., Yang, S. & Yang, S. Surface modification of TiO2 for perovskite solar cells. Trends Chem. 2, 148-162 (2020). https://doi.org/10.1016/j.trechm.2019.11.002.
  • [12] Alturki, A. A. et al. Polymeric solar cell with 18.06% efficiency based on poly(para-nitroaniline)/TiO2 composites. Opt. Mater. 136, 113502 (2023). https://doi.org/10.1016/j.optmat.2023.113502.
  • [13] Devadiga, D., Selvakumar, M., Shetty P. & Santosh, M. S., Dye-sensitized solar cell for indoor applications: A mini-review, J. Electron. Mater. 50, 3187-3206 (2021). https://doi.org/10.1007/s11664-021-08854-3.
  • [14] Adewinbi, S. A. Preparation and characterization of TiO2 thin film electrode for optoelectronic and energy storage potentials: effects of Co incorporation. Chem. Phys. Lett. 779, 138854 (2021). https://doi.org/10.1016/j.cplett.2021.138854.
  • [15] Zaban, A., Meier, A. & Gregg, B. A. Electric potential distribution and short-range screening in nanoporous TiO2 electrodes. J. Phys. Chem. B 101, 7985-7990 (1997). https://doi.org/10.1021/jp971857u.
  • [16] Rzaij, J. M. & Abass, A. M. Review on: TiO2 thin film as a metal oxide gas sensor. J. Chem. Rev. 2, 114-121 (2020). https://doi.org/10.33945/SAMI/JCR.2020.2.4.
  • [17] Tian, X. et al. Gas sensors based on TiO2 nanostructured materials for the detection of hazardous gases: A review. Nano Mater. Sci. 3, 390-403 (2021). https://doi.org/10.1016/j.nanoms.2021.05.011.
  • [18] D’Agostino, M. et al. Antibacterial titanium dioxide coatings for CoCrMo orthopaedic implants. Appl. Surf. Sci. 609, 155300 (2023). https://doi.org/10.1016/j.apsusc.2022.155300.
  • [19] Catauro, M., Dal Poggetto, G., Risoluti, R. & Vecchio Ciprioti, S. Thermal, chemical and antimicrobial characterization of bioactive titania synthesized by sol-gel method. J. Therm. Anal. 142, 1767-1774 (2020),. https://doi.org/10.1007/s10973-020-10264-2.
  • [20] Karasiński, P. et al. Sol-gel derived silica-titania waveguide films for applications in evanescent wave sensors–comprehensive study. Materials 15, 7641 (2022). https:// doi.org/10.3390/ma15217641.
  • [21] Karasiński, P. et al. Homogeneity of sol-gel derived silica-titania waveguide films - spectroscopic and AFM studies. Opt. Laser Technol. 121, 105840 (2020). https://doi.org/10.1016/j.optlastec.2019.105840.
  • [22] Touam, T. et al. Low loss sol-gel TiO2 thin films for waveguiding aplications. Coatings 3, 49-58 (2013). https://doi.org/10.3390/coatings3010049.
  • [23] Bradley, J. D. B. et al. Submicrometer-wide amorphous and polycrystalline anatase TiO2 waveguides for microphotonic devices. Opt. Express 20, 23821-23831 (2012). https://doi.org/10.1364/OE.20.023821.
  • [24] Aroutiounian, V., Arakelyan, V., Galstyan, V., Martirosyan, K. & Soukiassian, P. Hydrogen sensor made of porous silicon and covered by TiO2-x or ZnO thin film. IEEE Sens. J. 9, 9-12 (2009). https://doi.org/10.1109/JSEN.2008.2008406.
  • [25] Kot, A., Radecka, M. & Zakrzewska, K. Influence of Er and Yb on photoelectrochemical performence of TiO2 thin film. Appl. Surf. Sci. 608, 155127 (2023). https://doi.org/10.1016/j.apsusc.2022.155127.
  • [26] Tao, R. H. et al. Pulsed laser deposition of titania on rutile nanorod arrays. Thin Solid Films 518, 4191-4196 (2010). https://doi.org/10.1016/j.tsf.2009.12.002.
  • [27] Nakaruk, A., Ragazzon, D. & Sorrell, C. C. Anatase-rutile trans-formation through high-temperature annealing of titania films produced by ultrasonic spray pyrolysis. Thin Solid Films 518, 3735-3742 (2010). https://doi.org/10.1016/j.tsf.2009.10.109.
  • [28] Zhang, W. Z., Zhang, T., Yin, W. & Cao, G. Relationship between photocatalytic activity and structure of TiO2 thin film. Chinese J. Chem. Phys. 20, 95-98 (2007). https://doi.org/10.1360/cjcp2007.20(1).95.4.
  • [29] Babelon, P. et al. SEM and XPS studies of titanium dioxide thin films grown by MOCVD. Thin Solid Films 322, 63-67 (1998). https://doi.org/10.1016/S0040-6090(97)00958-9.
  • [30] Saha, D. et al. Spectroscopic ellipsometry characterization of amorphous andcrystalline TiO2 thin films grown by atomic layer deposition at different temperatures. Appl. Surf. Sci. 315, 116-123 (2014). https://doi.org/10.1016/j.apsusc.2014.07.098.
  • [31] Szindler, M., Szindler, M. M., Orwat, J. & Kulesza-Matlak, G. The Al2O3/TiO2 double antireflection coating deposited by ALD method. Opto-Electron. Rev. 30, e141952 (2022). https://doi.org/10.24425/opelre.2022.141952.
  • [32] Gondek, E., Karasiński, P. & Drewniak S. Nano-quantum size effect in sol–gel derived mesoporous titania layers deposited on soda-lime glass substrate. Physica E Low Dimens. Syst. Nanostruct. 62, 128-135 (2014). https://doi.org/10.1016/j.physe.2014.04.018.
  • [33] Brinker, C. J. & Scherer, G. W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. (Academic Press, San Diego, 1990).
  • [34] Duta, M. et al. Structural and electrical properties of Nb doped TiO2 films prepared by the sol-gel layer-by-layer technique. Mater. Res. Bull. 74, 15-20 (2016). https://doi.org/10.1016/j.materresbull.2015.10.009.
  • [35] Kim, D. J., Hahn, S. H., Oh, S. H. & Kim, E. J. Influence of calcination temperature on structural and optical properties of TiO2 thin films prepared by sol-gel dip coating. Mater. Lett. 57, 355-360 (2002). https://doi.org/10.1016/S0167-577X(02)00790-5.
  • [36] Mechiakh, R. et al. TiO2 thin films prepared by sol-gel method for waveguiding applications: Correlation between the structural and optical properties. Opt. Mater. 30, 645-651 (2007). https://doi.org/10.1016/j.optmat.2007.02.047.
  • [37] Mechiakh, R., Ben Sedrine, N., Ben Naceur, J. & Chtourou R. Elaboration and characterization of nanocrystalline TiO2 thin films prepared by sol-dip-coating. Surf. Coat. Technol, 206, 243-249 (2011). https://doi.org/10.1016/j.surfcoat.2011.06.053.
  • [38] Ye, L. et al. Sol-gel preparation of SiO2/TiO2/SiO2-TiO2 broad-band antireflective coating for solar cell cover glass. Sol. Energy Mater. Sol. Cells. 111, 160-164 (2013). https://doi.org/10.1016/j.solmat.2012.12.037.
  • [39] Karasiński, P., Tyszkiewicz, C., Rogoziński, R., Jaglarz, J. & Mazur, J. Optical rib waveguides based on sol-gel derived silica-titania films. Thin Solid Films, 519, 5544-5551 (2011). https://doi.org/10.1016/j.tsf.2011.02.064.
  • [40] Klein, L. C. Sol-Gel Optics: Procesing and Applications. (Kluwer Academic Publishers, Boston, 1994).
  • [41] Strawbridge, I. & James, P. F. The factors affecting the thickness of sol-gel derived silica coatings prepared by dipping. J. Non-Cryst. 86, 381-393 (1986). https://doi.org/10.1016/0022-3093(86)90026-8.
  • [42] Azzam, R. M. A. & Bashara, N. M. Ellipsometry and Polarized Light. (North-Holland Personal Library, 1999). Available online: https://www.amazon.com/Ellipsometry-Polarized-North-Holland-Personal-Library/dp/0444870164 (accessed on 14 May 2021).
  • [43] Bendavid, A., Martin, P. J., Jamting, Å. & Takikawa, H., Structural and optical properties of titanium oxide thin films deposited by filtered arc deposition. Thin Solid Films 355-356, 6-11 (1999). https://doi.org/10.1016/S0040-6090(99)00436-8.
  • [44] Postava, K., Aoyama, M., Yamaguchi, T. & Oda, H. Spectro-ellipsometric characterization of materials for multilayer coatings. Appl. Surf. Sci. 175-176, 276-280 (2001). https://doi.org/10.1016/S0169-4332(01)00163-5.
  • [45] Blanckenhagen, B., Tonova, D. & Ullmann, J. Application of the Tauc-Lorentz formulation to the interband absorption of optical coating materials. Appl. Opt. 41, 3137-3141 (2002). https://doi.org/10.1364/AO.41.003137.
  • [46] Blanco, E. et al. Insights into the annealing process of sol-gel TiO2 films leading to anatase development: The interrelationship between microstructure and optical properties. Appl. Surf. Sci. 439, 736-748 (2018). https://doi.org/10.1016/j.apsusc.2018.01.058.
  • [47] Jellison, G. E. & Modine, F. A. Erratum: Parameterization of the optical functions of amorphous materials in the interband region. Appl. Phys. Lett. 69, 2137 (1996). https://doi.org/10.1063/1.118155.
  • [48] Jellison, G.E. & Modine, F. A. Parameterization of the optical functions of amorphous materials in the interband region. Appl. Phys. Lett. 69, 371-373 (1996). https://doi.org/10.1063/1.118064.
  • [49] Jellison, G. et al. Characterization of thin-film amorphous semi-conductors using spectroscopic ellipsometry. Thin Solid Films 377-378, 68-73 (2000). https://doi.org/10.1016/S0040-6090(00)01384-5.
  • [50] Hassanien, A. S. & Akl, A. A. Optical characterizations and refractive index dispersion parameters of annealed TiO2 thin films synthesized by RF-sputtering technique at different flow rates of the reactive oxygen gas. Physica B Condens. Matter. 576, 411718 (2020). https://doi.org/10.1016/j.physb.2019.411718.
  • [51] Mathews, N. R., Morales, E. R., Cortés-Jacome, M. A. & Toledo Antonio, J. A. TiO2 thin films – Influence of annealing temperature on structural, optical and photocatalytic properties. Sol. Energy 83, 1499–1508 (2009). https://doi.org/10.1016/j.solener.2009.04.008.
  • [52] Yan, J. et al. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile. Phys. Chem. Chem. Phys. 15, 10978-10988 (2013). https://doi.org/10.1039/c3cp50927c.
  • [53] Boda, M. A. & Shah, M. A. Fabrication mechanism of compact TiO2 nanotubes and their photo-electrochemical ability. Mater. Res. Express 4, 075908 (2017). https://doi.org/10.1088/2053-1591/aa7cd2.
  • [54] Ekoi, E. J., Gowen, A., Dorrepaal R. & Dowling, D. P. Characterisation of titanium oxide layers using Raman spectroscopy and optical profilometry: Influence of oxide properties. Results Phys. 12, 1574–1585 (2019). https://doi.org/10.1016/j.rinp.2019.01.054
  • [55] Montagna, M. et al. Nucleation of titania nanocrystals in silica titania waveguides. J. Sol-Gel Sci. Technol. 26, 241-244 (2003). https://doi.org/10.1023/A:1020755200573.
  • [56] Tauc, J. Optical Properties of Amorphous Semiconductors. in Amorphous and Liquid Semiconductors (ed. Tauc, J.) 159-220 (Springer, 1974). https://doi.org/10.1007/978-1-4615-8705-7_4.
  • [57] Vasantkumar, C. V. R. & Mansingh, A. Properties of RF Sputtered Tetragonal and Hexagonal Barium Titanate Films. in 7th IEEE International Symposium on Application of Ferroelectrics (ISAF) 713-716 (IEEE, New York, 1990). https://doi.org/10.1109/ISAF.1990.200355.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cf026143-5910-4843-988c-1189841e5e73
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.