PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Glossokinetic potential based tongue–machine interface for 1-D extraction using neural networks

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Tongue machine interface (TMI) is a tongue-operated assistive technology enabling people with severe disabilities to control their environments using their tongue motion. In many disorders such as amyotrophic lateral sclerosis or stroke, people can communicate with the external world in a limited degree. However, they may be disabled, while their mind is still intact. Various tongue–machine interface techniques has been developed to support these people by providing additional communication pathway. In this study, we aimed to develop a tongue–machine interface approach by investigating pattern of glossokinetic potential (GKP) signals using neural networks via simple right/left tongue touchings to the buccal walls for 1-D control and communication, named as GKP-based TMI. As can be known in the literature, the tongue is connected to the brain via hypoglossal cranial nerve. Therefore, it generally escapes from the severe damages, in spinal cord injuries and was slowly affected than limbs of persons suffering from many neuromuscular degenerative disorders. In this work, 8 male and 2 female naive healthy subjects, aged 22 to 34 years, participated. Multilayer neural network and probabilistic neural network were employed as classification algorithms with root-mean-square and power spectral density feature extraction operations. Then the greatest success rate achieved was 97.25%. This study may serve disabled people to control assistive devices in natural, unobtrusive, speedy and reliable manner. Moreover, it is expected that GKP-based TMI could be a collaboration channel for traditional electroencephalography (EEG)-based brain computer interfaces which have significant inadequacies arisen from the EEG signals.
Twórcy
autor
  • Department of Electrical and Electronics Engineering, Sakarya University, Sakarya, Turkey; Department of Electrical and Electronics Engineering, Bozok University, 66200 Yozgat, Turkey
  • Department of Electrical and Electronics Engineering, Sakarya University, Sakarya, Turkey
autor
  • Department of Electrical and Electronics Engineering, Bozok University, Yozgat, Turkey
autor
  • Department of Electrical and Communication Engineering, Bandirma Onyedi Eylul University, Balikesir, Turkey
Bibliografia
  • [1] Huo X, Ghovanloo M. Tongue drive: a wireless tongue-operated means for people with severe disabilities to communicate their intentions. IEEE Commun Mag 2012;50 (10):128–35.
  • [2] Nam Y, Koo B, Cichocki A, Choi S. Glossokinetic potentials for a tongue–machine interface. IEEE Syst Man Cybern Mag 2016;2(1):6–13.
  • [3] Nam Y, Zhao Q, Cichocki A, Choi S. Tongue-rudder: a glossokinetic-potential-based tongue–machine interface. IEEE Trans Biomed Eng 2012;59(1):290–9.
  • [4] Tang H, Beebe DJ. An oral tactile interface for blind navigation. IEEE Trans Neural Syst Rehab Eng 2006;14 (1):116–23.
  • [5] Bao X, Wang J, Hu J. Method of individual identification based on electroencephalogram analysis. Inter Conf on New Trends in Infor and Ser Sci 2009;390–3. http://dx.doi.org/10.1109/NISS.2009.44.
  • [6] Miller KJ, Shenoy P, Nijs M, Sorensen LB, Rao RJP, Ojemann JG. Beyond the Gamma Band: The role of high-frequency features in movement classification. IEEE Trans Biomed Eng 2008;55(5):1634–7.
  • [7] Nam Y, Koo B, Cichocki A, Choi S. GOM-Face: GKP, EOG, and EMG-based multimodal interface with application to humanoid robot control. IEEE Trans Biomed Eng 2014;61 (2):453–62.
  • [8] Reuderink B, Poel M, Nijholt A. The impact of loss of control on movement BCIs. IEEE Trans Neural Syst Rehab Eng 2011;19(6):628–37.
  • [9] Huo X, Wang J, Ghovanloo M. A magneto-inductive sensor based wireless tongue-computer interface. IEEE Trans Neural Syst Rehab Eng 2008;16(5):497–504.
  • [10] Rupp R, Rohm M, Schneiders M, Kreilinger A, Müller-Putz GR. Functional rehabilitation of the paralyzed upper extremity after spinal cord injury by noninvasive hybrid neuroprostheses. Proc IEEE 2015;103(6):954–68.
  • [11] Alonso-Valerdi LM, Sepulveda F. Development of a simulated living environment platform: design of BCI assistive software and modelling of a virtual dwelling place. Comput Aided Des 2014;54:39–50.
  • [12] Huo X, Wang J, Ghovanloo M. Using magneto-inductive sensors to detect tongue position in a wireless assistive technology for people with severe disabilities. IEEE Sensor Conf. 2007;732–5.
  • [13] Huo X, Wang J, Ghovanloo M. A wireless tongue-computer interface using stereo differential magnetic field measurement. Proceedings of the 29th Ann Inter Conf of the IEEE EMBS Cité Internationale 2007;5723–6.
  • [14] Huo X, Wang J, Ghovanloo M. A magnetic wireless tongue–computer interface. Proceed of the 3rd Inter IEEE EMBS Conf on Neural Engineering Kohala Coast 2007;322–6.
  • [15] Krishnamurthy G, Ghovanloo M. Tongue Drive: a tongue operated magnetic sensor based wireless assistive technology for people with severe disabilities. IEEE Inter. Sym. on Circuits and Systems, ISCAS, 2006, Proceedings; 2006;5551–4.
  • [16] Vaidyanathan R, Chung B, Gupta L, Kook H, Kota S, West JD. Tongue-movement communication and control concept for hands-free human–machine interfaces. IEEE Trans Syst Man Cybern 2007;37(4):533–46.
  • [17] Vaidyanathan R, James CJ. Independent component analysis for extraction of critical features from tongue movement ear pressure signals. Proceed of the 29th Ann Inter Conf of the IEEE EMBS Cité Internationale 2007;5481–3.
  • [18] Vaidyanathan R, Gupta L, Kook H, West J. A decision fusion classification architecture for mapping of tongue movements based on aural flow monitoring. Proceedings of the IEEE International Conference on Robotics and Automation Orlando 2006;3610–7.
  • [19] Vaidyanathan R, Fargues M, Gupta L, Kota S, Lin D, West J. A dual-mode human-machine interface for robotic control based on acoustic sensitivity of the aural cavity. IEEE/RASEMBS International Conference on Biomedical Robotics and Biomechatronics BioRob'06 2006. http://dx.doi.org/10.1109/BIOROB.2006.1639210.
  • [20] Vaidyanathan R, Kook H, Gupta L, West J. Parametric and non-parametric signal analysis for mapping air flow in the ear-canal to tongue movements: a new strategy for hands free human–machine interfaces. IEEE International Conference on Acoustics Speech and Signal Processing Proceedings 2004;613–6.
  • [21] Bascil MS, Tesneli AY, Temurtas F. Multi-channel EEG signal feature extraction and pattern recognition on horizontal mental imagination task of 1-D cursor movement for brain computer interface. Australas Phys Eng Sci Med 2015;38(2):229–39.
  • [22] Temurtas H, Yumusak N, Temurtas F. A comparative study on diabetes disease diagnosis using neural networks. Expert Syst Appl 2009;36:8610–5.
  • [23] Jasper H. The ten twenty electrode system of the international federation. Electro Clin Neuro 1958;10(2):370–5.
  • [24] Bascil MS, Tesneli AY, Temurtas F. Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN. Australas Phys Eng Sci Med 2016;39(3):665–76.
  • [25] Nam Y, Bonkon K, Choi S. Language-related glossokinetic potentials on scalp. IEEE International Conference on Systems Man and Cybernetics 2014;1063–7.
  • [26] Vanhatalo S, Voipio J, Dewaraja A, Holmes MD, Miller JW. Topography and elimination of slow EEG responses related to tongue movements. NeuroImage 2013;20:1419–23.
  • [27] Ramadan RA, Vasilakos AV. Brain computer interface: control signals review. Neurocomputing 2017;223:26–44.
  • [28] Daly JJ, Fang Y, Perepezko EM, Siemionow V, Yue GH. Prolonged cognitive planning time, elevated cognitive effort, and relationship to coordination and motor control following stroke. IEEE Trans Neural Syst Rehab Eng 2006;14 (2):168–71.
  • [29] Yalcın N, Tezel G, Karakuzu C. Epilepsy diagnosis using artificial neural network learned by PSO. Turk J Electr Eng Comput Sci 2015;23:421–32.
  • [30] Rechy-Ramirez EJ, Hu H. Bio-signal based control in assistive robots: a survey. Dig Commun Netw 2015;1(2):85–101.
  • [31] Proakis JG, Manolakis DG. Digital signal processing principles, algorithms and applications. 3rd edn. New York: Prentice-Hall; 1996 [chapter 12].
  • [32] Stoica P, Moses R. Spectral analysis of signals. New York: Prentice Hall International; 2005.
  • [33] Alpaydın E. Introduction to machine learning. Second Edition. Cambridge, MA: MIT Press; 2010.
  • [34] Kavita M, Vargantwar MR, Sangita MR. Classification of EEG using PCA, ICA and neural network,. Int J Eng Adv Technol 2011;1:1–4.
  • [35] Shafi I, Ahmad J, Shah SI, Kashif FM. Impact of varying neurons and hidden layers in neural network architecture for a time frequency application. IEEE Multitopic Conference 2006;188–93.
  • [36] Şen B, Peker M. Novel approaches for automated epileptic diagnosis using FCBF selection and classification algorithms. Turk J Electr Eng Comput Sci 2013;21:2092–109.
  • [37] Shannon CE, Weaver W. Mathematical theory of communication champaign. IL: Univ. Illinois Press; 1964.
  • [38] Obermaier B, Neuper C, Guger C, Pfurtscheller G. Information transfer rate in a five-classes brain–computer interface. IEEE Trans Neural Syst Rehab 2001;9(3):283–8.
  • [39] Sengelmann M, Engel AK, Maye A. Maximizing information transfer in ssvep-based brain–computer interfaces. IEEE Trans Biomed Eng 2017;64(2):381–94.
  • [40] Challita N, Khalil M, Beauseroy P. New feature selection method based on neural network and machine learning. IEEE International Multidisciplinary Conference on Engineering Technology 2016. http://dx.doi.org/10.1109/IMCET.2016.7777431.
  • [41] Hunter D, Yu H, Pukish MS, Kolbusz J, Wilamowski BM. Selection of proper neural network sizes and architectures—a comparative study. IEEE Trans Ind Inform 2012;8(2):228–40.
  • [42] Gupta MM, Jın L, Homma N. A John Wıley & Sons Publication. Static and dynamic neural networks; 2013. ISBN 0-471-21948-7.
  • [43] Sheela KG, Deepa SN. Review on methods to fix number of hidden neurons in neural networks. Math Probl Eng 2013;1–11.
  • [44] Guler I, Ubeyli ED. Multiclass support vector machines for EEG-signals classification. IEEE Trans Inf Technol Biomed 2007;11(2):117–26.
  • [45] Bao FS, Lie DYC, Zhang Y. A new approach to automated epileptic diagnosis using EEG and probabilistic neural network. 20th IEEE International Conference on Tools With Artificial Intelligence 2008;482–6.
  • [46] Bao FS, Gao JM, Hu J, Lie DYC, Zhang Y, Oommen KJ. Automated epilepsy diagnosis using interictal scalp EEG. 31st Annual International Conference of the IEEE EMBS Minneapolis 2009;6603–7.
  • [47] Kao JC, Stavisky SD, Sussillo D, Nuyujukian P, Shenoy KV. Information systems opportunities in brain–machine interface decoders. Proc IEEE 2014;102(5):666–82.
  • [48] Barreto AB, Taberner AM, Vicente LM. Classification of spatio-temporal EEG readiness potentials towards the development of a brain–computer interface, bringing together education, science and technology. Proceedings of the IEEE 1996;99–102.
  • [49] Jayaram V, Alamgir M, Altun Y, Schölkopf B, Grosse-Wentrup M. Transfer learning in brain-computer interfaces. IEEE Comput Intell Mag 2016;20–31.
  • [50] Cerutti S. In the spotlight: biomedical signal processing. IEEE Rev Biomed Eng 2009;2:9–11.
  • [51] Bhimraj K, Haddad RJ. Autonomous noise removal from EEG signals using ındependent component analysis. Charlotte, NC, USA: SoutheastCon; 2017.
  • [52] Leeb R, Lee F, Keinrath C, Scherer R, Bischof H, Pfurtscheller G. Brain-computer communication: motivation, aim, and impact of exploring a virtual apartment. IEEE Trans Neural Syst Rehab 2007;15(4):473–81.
  • [53] Fazlı S, Dahne S, Samek W, Biebman F, Müller KR. Learning from more than one data source: data fusion techniques for sensorimotor rhythm-based brain–computer ınterfaces. Proc IEEE 2015;103(6):891–906.
  • [54] Severens M, Hernandez MP, Nienhuis B, Farquhar J, Duysens J. Using actual and ımagined walking related desynchronization features in a BCI. IEEE Trans Neural Syst Rehab Eng 2015;23(5):877–86.
  • [55] Gorur K, Bozkurt MR, Bascil MS, Temurtas F. Glossokinetic potential based tongue–machine interface for 1-D extraction. Australas Phys Eng Sci Med 2018;41(2):379–91.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cef35b07-e31b-49ff-b6ed-d68d57e5c8d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.