PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Theoretical analysis and verification of the influence of bubble, pore throat and water film on pore water seepage characteristics‑taking sandstone as the research object

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bubble, pore throat and water film will significantly affect the seepage characteristics of pore water. Based on the theory of porous media and mass and momentum conservation of pore water, this research investigates the blocking effects of bubble, pore throat and water film on the seepage water. According to the bubble force balance relationship, there exists a threshold ΔP at the pore throat. It is discovered through theoretical analysis that the small bubble cannot obstruct the pore throat, while the large bubble could pass through the pore throat after deforming and rupturing as the water pressure is greater than ΔP. In contrast, the bubble cannot pass through the pore throat and will block the water seepage. Meanwhile, the energy will be consumed in the aforementioned process, which will cause a drop in the pressure and seepage velocity of pore water along the seepage path, resulting in the non-uniform seepage characteristics of pore water. Combined with theoretical analysis, considering the factors of water injection pressure and pore size, the seepage and distribution characteristics of pore water are evaluated from macro- and micro-levels through sandstone water injection tests and numerical simulation analysis. Two experimental findings are very consistent, both reflect the non-uniform seepage characteristics of pore water and validate the rationality and precision of the theoretical analysis about the throat threshold ΔP. The findings of this study have certain theoretical reference significance for the theoretical research and practical engineering application about pore water seepage.
Rocznik
Strony
art. e225, 1--21
Opis fizyczny
Bibliogr. 41 poz., il., rys., tab., wykr.
Twórcy
  • Xi’an University of Architecture and Technology, School of Civil Engineering, Xi’an, China
  • Shaanxi Key Lab of Geotechnical and Underground Space Engineering, Xi’an, China
  • Xi’an University of Architecture and Technology, School of Civil Engineering, Xi’an, China
  • Shaanxi Key Lab of Geotechnical and Underground Space Engineering, Xi’an, China
autor
  • Xi’an University of Architecture and Technology, School of Civil Engineering, Xi’an, China
  • Shaanxi Key Lab of Geotechnical and Underground Space Engineering, Xi’an, China
autor
  • Shaanxi Key Lab of Geotechnical and Underground Space Engineering, Xi’an, China
  • Xi’an University of Architecture and Technology, School of Civil Engineering, Xi’an, China
  • Shaanxi Key Lab of Geotechnical and Underground Space Engineering, Xi’an, China
autor
  • School of Resource and Civil Engineering, Northeastern University, Shenyang, China
  • Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Shenyang,, China
Bibliografia
  • 1. Xue WP, Jing W, Wang ZJ, Zhang HW, Lin J. Mechanical behavior and constitutive model of lining concrete in triaxial compression infiltration process under pore water pressure. Arch Civ Mech Eng. 2022;23(1):20.
  • 2. Grymin W, Gawin D, Koniorczyk M, Pesavento F. Experimental and numerical investigation of the alkali-silica reaction in the cement-based materials. Arch Civ Mech Eng. 2018;18(4):1698-714.
  • 3. Ai Q, Yuan Y, Jiang XM, Wang H, Han CJ, Huang XC, Wang K. Pathological diagnosis of the seepage of a mountain tunnel. Tunn Undergr Sp Tech. 2022;128: 104657.
  • 4. Yan CZ, Fan HW, Huang DR, Wang G. A 2D mixed fracture-pore seepage model and hydromechanical coupling for fractured porous media. Acta Geotech. 2021;16(10):3061-86.
  • 5. Zhang BN, Li XG, Zhao YL, Chang C, Zheng J. A review of gas flow and its mathematical models in shale gas reservoirs. Geofluids. 2020;2020:8877777.
  • 6. Pang MK, Zhang TJ, Li Y, Song S. Experimental investigation of water-gas mixed seepage parameters characteristics in broken coal medium. Energy Rep. 2022;8:281-9.
  • 7. Mahabadi N, Zheng XL, Yun TS, Van Paassen L, Jang J. Gas bubble migration and trapping in porous media: pore-scale simulation. J Geophys Res Solid Earth. 2018;123(2):1060-71.
  • 8. Wu ZB, Liu HQ, Pang ZX, Wu C, Gaot M. Pore-scale experiment on blocking characteristics and for mechanisms of nitrogen foam for heavy oil: a 2D visualized study. Energ Fuel. 2016;30(11):9106-13.
  • 9. Pang ZX, Cheng SL, Liu HQ. Numerical simulation and experimental investigation on steady flow foam in porous media. Chinese J Theor App Mech. 2008;40(5):599-604.
  • 10. Wu Y, Li YZ, Qiao WG, Fan ZW, Zhang S, Chen K, Zhang L. Water seepage in rocks at micro-scale. Water-Sui. 2022;14(18):2827.
  • 11. Wang J, Liu HQ, Pang ZX, Li RJ, Li M. The investigation of threshold pressure gradient of foam flooding in porous media. Petrol Sci Technol. 2011;29(23):2460-70.
  • 12. Wu C, Li HB, Niu Z, Huang H, Huo L, Sun Q. The influence of pressure to plugging capacity and bubble size of the air foaming. Petrochem Ind Appl. 2013;32(8):27-9.
  • 13. Qiu L, Zhou G, Zhang WZ, Han WB. Simulations on the microseepage rules of gas and water based on micro-CT/CFD and the related contrastive analysis. Arab J Geosci. 2019;12(17):549.
  • 14. An SY, Yao J, Yang YF, Zhang L, Zhao JL, Gao Y. Influence of pore structure parameters on flow characteristics based on a digital rock and the pore network model. J Nat Gas Sci Eng. 2016;31:156-63.
  • 15. Sun ZG, Ni N, Sun YJ, Xi G. Modeling of single film bubble and numerical study of the plateau structure in foam system. J Hydrodyn. 2018;30(1):79-86.
  • 16. Paolinelli L, Yao J, Rashedi A. Phase wetting detection and water layer thickness characterization in two-phase oil-water flow using high frequency impedance measurements. J Petrol Sci Eng. 2017;157:671-9.
  • 17. Valavanides MS. Review of steady-state two-phase flow in porous media: independent variables, universal energy efficiency map, critical flow conditions, effective characterization of flow and pore network. Transport Porous Med. 2018;123(1):45-99.
  • 18. Qi CY, Liu Y, Dong FJ, Liu XX, Yang X, Shen Y, Huang H. Study on heterogeneity of pore throats at different scales and its influence on seepage capacity in different types of tight carbonate reservoirs. Geofluids. 2020;2020:6657660.
  • 19. Tian W, Li AF, Ren XX, Josephine Y. The threshold pressure gradient effect in the tight sandstone gas reservoirs with high water saturation. Fuel. 2018;226:221-9.
  • 20. Li HB, Guo HK, Li HJ, Liu W, Jiang BC, Hua JC. Thickness analysis of bound water film in tight reservoir. Nat Gas Geosci. 2015;26(1):186-92.
  • 21. Tian J, Kang YL, Jia N, Luo PY, You LJ. Investigation of the controlling rock petrophysical factors on water phase trapping damage in tight gas reservoir. Energy Sci Eng. 2020;8(3):647-60.
  • 22. Chen SK, Yang TH, Ranjith PG, Wei CH. Mechanism of the two-phase flow model for water and gas based on adsorption and desorption in fractured coal and rock. Rock Mech Rock Eng. 2017;50(3):571-86.
  • 23. Hu CY, Wang FJ, Liu YK, Zhi JQ. Three-dimensional lattice Boltzmann simulation of gas-water transport in tight sandstone porous media: influence of microscopic surface forces. Energy Sci Eng. 2020;8(6):1924-40.
  • 24. Nishiyama N, Yokoyama T. Estimation of water film thickness in geological media associated with the occurrence of gas entrapment. Procedia Earth Planet Sci. 2013;7:620-3.
  • 25. Tsakiroglou CD, Aggelopoulos CA, Terzi K, Avraam DG, Valavanides MS. Steady-state two-phase relative permeability functions of porous media: a revisit. Int J Multiphas Flow. 2015;73:34-42.
  • 26. Wang XD, Zhu GY, Wang L. Exact analytical solutions for moving boundary problems of one-dimensional flow in semi-Infinite porous media with consideration of threshold pressure gradient. J Hydrodyn. 2015;27(4):542-7.
  • 27. Zou JF, Wei A, Liang L. Analytical solution for steady seepage and groundwater inflow into an underwater tunnel. Geomech Eng. 2020;20(3):267-73.
  • 28. Nan X, Wang ZK, Hou JM, Tong Y, Li B. Clogging mechanism of pervious concrete: From experiments to CFD-DEM simulations. Constr Build Mater. 2021;270: 121422.
  • 29. Zhao Z, Zhou XP, Chen JW. Pore-scale hydraulic properties of virtual sandstone microstructures: spatial variations and voxel scale effects. Arch Civ Mech Eng. 2022;23(1):22.
  • 30. Monnet J, Boutonnier L. Calibration of an unsaturated air-watersoil model. Arch Civ Mech Eng. 2012;12(4):493-9.
  • 31. Fang Y, Yao ZS, Huang XW, Li XW, Diao NH, Hu K, Li H. Permeability evolution characteristics and microanalysis of reactive powder concrete of drilling shaft lining under stress-seepage coupling. Constr Build Mater. 2022;331: 127336.
  • 32. Long L, Li YJ, Gong HJ, Dong MZ. A numerical study of initiation and migration of trapped oil in capillaries with noncircular cross sections. Geofluids. 2019;2019:6343519.
  • 33. Wang WD, Meng FK, Su YL, Hou L, Geng XY, Hao YM. A simplified capillary bundle model for CO2-alternating-water injection using an equivalent resistance method. Geofluids. 2020;2020:8836287.
  • 34. Han YL, Liu JF, Yu YJ, Wang SH, Shen Q. Displacement characteristics and development effect of tight oil reservoir: a case from Chang 7 oil layer of the Yanchang Formation in Shangliyuan area. Ordos basin Oil Gas Geol. 2014;35(2):207-11.
  • 35. Li HR, Deng SG, Yuan XY, Hu XF, Niu YF. Pore structure characterization based on joint numerical and experimental study: a case study of Nanpu Sag. J Pet Explor Prod Technol. 2020;10(1):183-95.
  • 36. Li Q, Li J, Zhu BL. Experimental investigation of the influence of sequential water-rock reactions on the mineral alterations and porosity evolution of shale. Constr Build Mater. 2022;31: 125859.
  • 37. Zhang J, Ma GD, Ming RP, Cui XZ, Li L, Xu HN. Numerical study on seepage flow in pervious concrete based on 3D CT imaging. Constr Build Mater. 2018;161:468-78.
  • 38. Bian H, Xia YX, Lu C, Qin XW, Meng QB, Lu HF. Pore structure fractal characterization and permeability simulation of natural gas hydrate reservoir based on CT images. Geofluids. 2020;2020:6934691.
  • 39. Cao LL, Zhang P, Zhang JZ, Lin G, Jiskani IM, Chen ZQ. Experimental study of hysteresis characteristics of water-sediment mixture seepage in rock fractures. Geofluids. 2021;2021:6692388.
  • 40. Song ZP, Cheng Y, Tian XX, Wang JB, Yang TT. Mechanical properties of limestone from maixi tunnel under hydro-mechanical coupling. Arab J Geosci. 2020;13(11):402.
  • 41. Guo JQ, Xu ZL, Li HF. Influence of water-saturated state on mechanical properties and longitudinal wave velocity of karst limestone. J Civ Archit Environ Eng. 2015;37(2):60-6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ceec8d67-c930-49f5-a5f6-d930cf26cfd3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.