Identyfikatory
Warianty tytułu
Identyfikacja części pomiarowej cyfrowego zabezpieczenia przekaźnikowego na podstawie analizy czasu wyłączania
Języki publikacji
Abstrakty
The main problem preventing the use of digital relay protection mathematical models for real devices setting up is the confidentiality of the information about its internal configuration. This mainly concerns the input circuits (measuring part) of the protection, the components of which introduce the most significant errors. In this case, an arbitrary choice of the configuration may lead to incorrect results. The identification of the internal structure by standard methods, in particular by a real interpolation method, cannot be carried out in practice, due to the need to have input and output signals. In this regard, the purpose of the research was to develop a method of identification according to the time for formation of tripping signal. Identical signals were transmitted to real device and mathematical model of protection. The starting point of the time reference was the moment when the input signal reached a threshold; the final point was the time of tripping command appearance, unlike similar studies, where the time was determined by the closure of the output relay contacts. The research was carried out for 144 different combinations of the measuring part elements: auxiliary converters, analog filters, digital finite impulse response filters. As a result, the combination in which the smallest deviation from the tripping time of the real device was observed in all studied modes was selected as the most ‘optimal’. Performing such comparisons is the main way to make the model closer to real protection.
Analizowano cyfrowe zabezpieczenie przekaźnikowe I jego model matematyczny przy założeniu, że nie jest znana jego struktura wewnętrzna. Zaproponowano metodę identyfikacji bazując na pomiarze czasu między przekroczeniem przez sygnał wejściowy wartości progowe a wyłączeniem.
Wydawca
Czasopismo
Rocznik
Tom
Strony
71--75
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
autor
- Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk, Russia
Bibliografia
- [1] Andreev, M., Ruban, N., Gordienko, I., Borovikov, Yu., Gusev, A., Sulaymanov, A. “All-Regimes Simulation of Relay Protections in Electrical Power Systems”. Tomsk, Tomsk Polytech. University Publ., (2016), pp. 180 (In Russian).
- [2] Peng, Z., Li, M., Wu, C., Cheng, T., Ning, T. “A Dynamic State Space Model of a MHO Distance Relay” in IEEE Transactions on Power Apparatus and Systems, 1985, vol. 104, no. 12, pp. 3558-3564. http://doi.org/ 10.1109/TPAS.1985.318910.
- [3] Romaniuk, F., Rumiantsev, V., Novash, I., Rumiantsev, Y., & Boiko, O. (2016). Comparative assessment of digital filters for microprocessor-based relay protection. Przeglad Elektrotechniczny, 92(7), 128-131.
- [4] Novozhilov, A., Yussupova, A., Assainov, G., Novozhilov, T., & Manukovsky, A. (2018). Sources of independent power supply for protection relay. Przeglad Elektrotechniczny, 94(5), 23-26.
- [5] Mahadevan, N., Dubey, A., Chhokra, A., Guo, H., Karsai, G., “Using temporal causal models to isolate failures in power system protection devices” in IEEE Instrumentation & Measurement Magazine, 2016, vol. 18, n. 4: pp. 28–39. http://doi.org/ 10.1109/MIM.2015.7155770.
- [6] Hsieh, S., Chen, C., Tsai, C., Hsu, C., Lin, C., “Adaptive Relay Setting for Distribution Systems Considering Operation Scenarios of Wind Generators” in IEEE Transaction on Industrial Application, 2014, vol. 50, n. 2, pp. 1356–1363. http://doi.org/10.1109/-TIA.2013.2274613.
- [7] Rumiantsev, Yu., “Complex Model for Investigation of the Operation of the Digital Differential Protection of a Power Transformer” in Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 2016, vol. 59, n. 3, pp. 203. (in Russian).
- [8] Pyakillya, B., “Identification of robot system’s mathematical model” in Math. Struct. and Model, 2014, vol. 4, n. 32, pp. 100–104 (in Russian).
- [9] Andreev, M., Borovikov, Yu., Gusev, A., Sulaimanov A. Suvorov A. Ruban N. Ufa R “Concept and basic structure of the all-mode modeling complex” in Gas industry, 2017, vol. 5, n. 752, pp. 18–27. (in Russian).
- [10] Andreev, M., Gusev, A., Sulaymanov, A., Borovikov, Yu., “Setting of relay protection of electric power systems using its mathematical models” in IEEE PES Innovative Smart Grid Technologies (ISGT-Europe) Conference pp. 1-6. http://doi.org/10.1109-/ISGTEurope.2017.8260093.
- [11] Andreev, M., Suvorov, A., Askarov, A., Kievets, A., “The Problem of Digital Relay Protection Numerical Simulation and Its Analog-Digital (Hybrid) Solution” in Russian Electromechanics, 2018, vol. 6, n. 61, pp. 77–83. (in Russian).
- [12] Andreev, M., Askarov, A., Suvorov, A., “Design of the magnetic hysteresis mathematical model based on Preisach theory” in Electrical Engineering, 2019, vol. 101, n. 1, pp. 3-9. http://doi.org/10.1007/s00202-018-0751-3.
- [13] Dynamics. http://dynamics.com.ru
- [14] Kezunovic, M., Chen, Q., “A novel approach for interactive protection system simulation” in IEEE Transactions on Power Delivery, 1997, vol. 12, n. 2, pp. 668-674. http://doi.org/10.1109/61.584336.
- [15] Dyakov, A., Ovcharenko, N., “Microprocessor automation and relay protection of electric power systems” in Textbook for universities, Moscow, 2008, pp. (in Russian).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cee96a6b-9d17-4925-9aef-dde8a59572e5