PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelowanie hierarchiczne i metoda elementów skończonych do adaptacyjnej analizy struktur złożonych

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Niniejsza praca omawia tematykę modelowania hierarchicznego oraz metodę elementów skończonych do adaptacyjnej analizy struktur złożonych. Celem ogólnym pracy był rozwój usystematyzowanej teorii i technik numerycznych do automatycznej selekcji modeli obliczeniowych dla wybranej klasy problemów sprężystych mechaniki ciała stałego i mechaniki konstrukcji, obejmujących występujące w budowie maszyn, a także w budownictwie lądowym, złożone układy mechaniczne. Rozpatrywane były struktury składające się zarówno z części bryłowej (rozbudowanej przestrzennie), części grubościennej i/lub cienkościennej (powłokowej lub płytowej) oraz stref przejściowych. Wprowadzone modele obliczeniowe, zastosowane do każdej z wymienionych części różniły się między sobą wykorzystaniem wybranej teorii płyt, powłok lub teorii trójwymiarowej, a także parametrami numerycznymi metody elementów skończonych takimi jak: lokalne stopnie aproksymacji p i q, odpowiednio w kierunkach wzdłużnych i poprzecznym oraz lokalnym parametrem gęstości sieci h. Prezentowana praca obejmuje zarówno oparta na podejściu trójwymiarowym hierarchię modeli, odpowiednie aproksymacje metodą elementów skończonych, jak i szacowanie błędów sterujących procesem adaptacji oraz same procedury adaptacyjne. Pracę podzielono na osiem zasadniczych części, które w sposób logiczny odzwierciedlają przyjętą metodykę badawczą. We wprowadzającej części I przedstawiono przesłanki podjęcia tematu, zaprezentowano problemy badawcze związane z tematyką oraz omówiono dotychczasowy stan badań, a w oparciu o niego dokonano sformułowania celów pracy. W części II opisano ideę trójwymiarowego modelowania hierarchicznego, w tym hierarchię modeli opartych na podejściu trójwymiarowym oraz podstawy adaptacyjnych metod elementów skończonych, ze szczególnym uwzględnieniem adaptacyjności typu p i q, h oraz adaptacyjności modelu. Część III zawiera omówienie hierarchii elementów skończonych do adaptacyjnego modelowania i analizy struktur złożonych. Przedstawia ona algorytmy elementów skończonych opartych na podejściu trójwymiarowym: bryłowych, powłokowych hierarchicznych, powłokowych pierwszego rzędu i przejściowych, przeznaczonych odpowiednio do modelowania części masywnych, cienko- i grubościennych oraz stref przejściowych struktur złożonych. Część IV dotyczy szacowania błędów aproksymacji i modelowania oraz błędu całkowitego. Omówiono w niej definicje lokalne i globalne błędów oraz ich estymatory, a także algorytmy: obliczania wyrównoważonych, liniowych funkcji rozkładu naprężeń międzyelementowych oraz rozwiązywania problemów lokalnych, wykorzystywane w estymacji błędów. Część V przedstawia istotę trzech zjawisk: niewłaściwej granicy rozwiązania, lockingu oraz warstwy brzegowej oraz narzędzia numeryczne do wykrywania oraz oceny intensywności i zasięgu tych zjawisk. W części VI zamieszczono opis izotropowych procedur adaptacyjnych ciał trójwymiarowych oraz opracowano anizotropowe schematy adaptacyjne dla części bryłowych, powłokowych i przejściowych struktur złożonych, w zakresie zbieżności asymptotycznej. Następnie wprowadzono modyfikacje tych procedur w przypadku wystąpienia trzech zjawisk, omówionych w części V. Kolejna, VII część monografii przedstawia uogólniony algorytm adaptacyjnej analizy struktur złożonych, programy komputerowe służące tej analizie oraz wybrane przykłady numeryczne, potwierdzające efektywność zaproponowanych procedur. Pracę zamyka część VIII, w której omówiono wnioski z badań oraz dokonano podsumowania rozważań.
EN
The presented work concerns the problems of hierarchical modelling and finite element methods for adaptive analysis of complex structures. The main objective of the work was the development of the systematic theory and numerical techniqiues for automatic selection of computational models for a certain class of elastic problems of solid and structural mechanics, including complex mechanical systems occuring both in mechanical and civil engineering. The work considers structures consisting of solid (extended in three dimensions) parts, thin- or thick-walled parts (plates and shells), as well as of solid-to-shell, or solid-to-plate transition zones. The proposed computational models, applied to each such a part, differ with the utilization of the selected plate, shell or three-dimensional theory, the local longitudinal and transverse approximation orders p and q, and in the local mesh dimension h. The presented work includes a 3D-based hierarchy of models, proper hierarchical finite element approximations, error estimation for control of the adaptive process, and finally adaptive procedures within each part of complex structures. The work was divided into eight parts, which reflect the anticipated research methodology in a logical manner. In the first, introductory part, the reasoning for undertaking the subject is presented. Furthermore, the research problems dealing with the subject are established, and the state of the art is described, basing on which the research goals are formulated. The second part contains the description of the idea of 3D-based hierarchical modelling of complex structures, including the hierarchy of 3D-based solid, shell and transition models, and the basis of the adaptive finite element methods with a special emphasis on p, q and h adaptivity, and model adaptivity as well. The third part of the work presents a hierarchy of finite elements for adaptive modelling and analysis of complex structures. This part describes the algorithms of the 3D-based solid, hierarchical shell, first order shell, and solid-to-shell transition finite elements assigned for adaptive modelling of solid parts, thin- and thick-walled parts as well as of transition zones of complex structures. The fourth part of the work concerns the approximation, modelling and total error estimation. It introduces definitions of the local and global errors as well as of their estimators and indicators. This part also describes the algorithms for calculation of the equilibrated, linear interelement stress dis tribution and for the solution of local problems, which are both utilized in error estimation. In the fifth part the genesis of the three phenomena of the improper solution limit of the 3D model, the locking, and the boundary layer is elucidated. Moreover, the numerical tools for detection and assessment of intensity and range of these phenomena are elaborated. The sixth part of the work contains a description of the isotropic in its nature, adaptive procedure for 3D bodies. This part also includes the presentation of the own anisotropic adaptive procedures for solid, shell and transition parts of complex strucures, which procedures correspond to asymptotic range of convergence. Then, some modifications due to the three phenomena from the fifth part are proposed. The seventh part of the monograph proposes a generalized algorithm for adaptive analysis of complex structures and presents the computer code for such an analysis. In addition, numerical tests proving the effectivity of the elaborated algorthms are included. The work is completed by eighth part which formulates final conclusions and describes the significance of the obtained results.
Twórcy
autor
  • Instytut Maszyn Przepływowych PAN w Gdańsku
Bibliografia
  • [1] R. L. Actis, B. A. Szabo. Hierarchic models for bidirectional composites. Finite Elem. Anal. Des., 13 (1993), 149-168.
  • [2] R. L. Actis, B. A. Szabo, C. Schwab. Hierarchic models for laminated plates and shells. Comp. Methods Appl. Mech. Engrg, 172 (1999), 79-107.
  • [3] Advances in Adaptive Computational Methods in Mechanics. Red. red. P. Ladeveze, J. T. Oden. Elsevier, Amsterdam 1998.
  • [4] S. Ahmad. Curved Finite Elements in the Analysis of Solid, Shell and Plate Structures. Praca doktorska. University College of Swansea, Swansea 1969.
  • [5] M. Ainsworth, M. Arnold. A reliable a posteriori error estimation for adaptive hierarchic modelling. [W:] Advances in Adaptive Computational Methods in Mechanics. Red. red. P. Ladeveze, J. T. Oden. Elsevier, Amsterdam 1998, 231-256.
  • [6] M. Ainsworth, J. T. Oden. A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Engrg, 142 (1997), 1-88.
  • [7] M. Ainsworth, J. T. Oden. A posteriori error estimation in finite element analysis. Wiley, New York 2000.
  • [8] M. Ainsworth, J. T. Oden. A posteriori error estimators for second order eliptic systems: Part 1. Theoretical foundations and a posteriori error analysis. Computers Math. Applic., 25 (1993), 101-113.
  • [9] M. Ainsworth, J. T. Oden. A posteriori error estimators for second order eliptic systems: Part 2. An optimal order process for calculating self- equilibrating fluxes. Computers Math. Applic., 26 (1993), 75-87.
  • [10] M. Ainsworth, J. T. Oden. A procedure for a posteriori error estimation for h-p finite element methods. Comput. Methods Appl. Mech. Engrg, 101 (1992), 73-96.
  • [11] M. Ainsworth, J. T. Oden. A unified approach to a posteriori error estimation using element residual methods. Numer. Math., 65 (1993), 23-50.
  • [12] M. Ainsworth, J. T. Oden, W. Wu. A posteriori error estimation for hp approximation in elastostatics. Appl. Numer. Math., 14 (1994), 23-55.
  • [13] I. A. Aldoshina, S. A. Nazarov. Asymptotically exact joining conditions at the junction of plates with very different characteristic. PMM J. Appl. Math. Mech., 62 (1998), 253-261.
  • [14] F. Armero. On the locking and stability of finite elements in finite deformation plane strain problems. Computers & Structures, 75 (2000), 261-290.
  • [15] D. N. Arnold. Discretization by finite elements of a model parameter dependent problem. Numer. Math., 37 (1981), 405-421.
  • [16] D. N. Arnold, F. Brezzi. Locking free finite elements for shells. Math. Comput., 66 (1997), 1-14.
  • [17] D. N. Arnold, R. S. Falk. Asymptotic analysis of the boundary layer for the Reissner-Mindlin plate model. SIAM J. Math. Anal, 27 (1996), 486-514.
  • [18] D. N. Arnold, R. S. Falk. A Uniformly Accurate Finite Element Method for the Mindlin-Reissner Plate. Preprint No. 307. Institute of Mathematics and Its Applications. University of Minnesota, Minneapolis 1987.
  • [19] D.N. Arnold, R. S. Falk. Edge effects in the Reissner-Mindlin plate model. [W:] Analytical and Computational Models for Shells. Red. red. A. K. Noor, T. Belytschko, J. Simo. ASME, New York 1989, 71-90.
  • [20] D. N. Arnold, R. S. Falk. The boundary layer for Reissner-Mindlin plate model. SIAM J. Math. Anal., 21 (1990), 281-312.
  • [21] R. Ayad, G. Dhatt, J. L. Batoz. A new hybrid-mixed variational approach for Reissner-Mindlin plates. The MiSP model. Int. J. Numer. Methods Engrg, 42 (1998), 1149-1179.
  • [22] I. Babuśka. The finite element method with lagrangean multipliers. Numer. Math., 20 (1972), 179-192.
  • [23] I. Babuśka, H. C. Elman. Performance of h-p version of the finite element method with various elements. Int. J. Numer. Methods in Engrg, 36 (1993), 2503-2523.
  • [24] I. Babuśka, I. Lee, C. Schwab. On the a-posteriori estimation of the modelling error for heat conduction in plate and its Use for Adaptive Hierarchic Modelling. Appl. Numer. Math., 14 (1994), 5-21.
  • [25] I. Babuśka, L. Li. The hp version of the finite element method in plate modelling problem. Comm. Appl. Numer. Methods, 8 (1992), 17-26.
  • [26] I. Babuśka, L. Li. The problem of plate modeling: theoretical and computational results. Comput. Methods Appl. Mech. Engrg, 100 (1992), 249-273.
  • [27] I. Babuśka, W. C. Rheinboldt. A posteriori error estimates for finite element method. Int. J. Numer. Methods Engrg, 12 (1978), 1597-1615.
  • [28] I. Babuśka, W. C. Rheinboldt. Error estimates for adaptive finite element computations. SIAM J. Numer. Analysis, 15, 736-753, 1978.
  • [29] I. Babuśka, W. C. Rheinboldt. Reliable error estimation and mesh adaptation for the finite element method. [W:] Computational Method in Nonlinear Mechanics. Red. J. T. Oden. North Holland, Amsterdam 1980, 67-108.
  • [30] I. Babuśka, C. Schwab. Adaptive Hierarchic Modelling of Plates and Shells with A-Posteriori Error Estimation. Technical Note BN-1133. Univ. of Maryland. Institute for Physical Science and Technology. College Park 1992.
  • [31] I. Babuśka, M. Suri. Locking effects in finite element approximation of elasticity problems. Numer. Math., 62 (1992), 439-463.
  • [32] I. Babuśka, M. Suri. On locking and robustness in the finite element method SIAM J. Numer. Anal., 29 (1992), 1261-1293.
  • [33] I. Babuśka, M. Suri. On the rates of convergence of the finite element method. An overview. Int. J. Numer. Methods Engrg, 18 (1982), 324-241.
  • [34] I. Babuśka, M. Suri. The h-p version of the finite element method with quasiuniform meshes. RAIRO Math. Modeling Numer. Anal., 21 (1987), 199-238.
  • [35] I. Babuśka, M. Suri. The optimal rate of the p-version of the finite element method. SIAM J. Numer. Anal., 24 (1987), 750-776.
  • [36] I. Babuśka, B. A. Szabo, R. L. Actis. Hierarchic models for laminated composites. Int. J. Numer. Methods Engrg, 33 (1992), 503-535.
  • [37] I. Babuśka, B. A. Szabo, I. N. Katz. The p-version of the finite element method. SIAM J. Numer. Anal., 18 (19S1), 514-545.
  • [38] I. Babuśka, T. Strouboulis, C. S. Upadhay, S. K. Gandaraj. A posteriori estimation and adaptive control of the pollution error in the h-version of the finite element method. Int. J. Numer. Methods Engrg, 38 (1995), 4207- 4235.
  • [39] K. Ban as. Performance of 3D Variable Order, Isoparametric Element in Elastic Modeling of Shell-Like Structures. TICOM Report 92-08. The Texas Institute for Computational an Applied Mathematics. The University of Texas at Austin, Austin 1992.
  • [40] R. E. Bank, A. Weiser. Some a posteriori error estimators for eliptic partial differential equations. Math. Comput., 44 (1985), 283-301.
  • [41] K. J. Bathe, E. Dvorkin. A formulation of general shell elements - The use of mixed interpolation of tensorial components. Int. J. Numer. Methods Engrg, 22 (1986), 697-722.
  • [42] K. J. Bathe, E. Dvorkin. A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. Int. J. Numer. Methods Engrg, 21 (1985), 367-383.
  • [43] J. L. Batoz. An explicit formulation for an efficient triangular plate-bencling element. Int. J. Numer. Methods Engrg, 18 (1982), 1077-1089.
  • [44] J. L. Batoz, K. J. Bathe, L. W. Ho. A study of three-node triangular plate bending elements. Int. J. Numer. Methods Engrg, 15 (1980), 1771-1812.
  • [45] J. L. Batoz, F. Hammadi, C. Zheng, W. Zhong. On the linear analysis of plates and shells using a new-16 degrees of freedom flat shell element. Computers & Structures, 78 (2000), 11-20.
  • [46] J. L. Batoz, I. Katili. On a simple triangular Reissner/Mindlin plate element based on incompatible modes and discrete constraints. Int. J. Numer. Methods Engrg, 35 (1992), 1603-1632.
  • [47] J. L. Batoz, P. Lardeur. A discrete triangular nine d.o.f. element for the analysis of thick to very thin plates. Int. J. Numer. Methods Engrg, 28 (1989), 533-560.
  • [48] R. Becker, R. Rannacher. A feed-back approach to error control in FE methods: Basic analysis and examples. East-West J. Numer. Math., 4 (1996), 237-264.
  • [49] R. Becker, R. Rannacher. Weighted a posteriori error control in FE methods. [W:] Proc. of the First European Conf. on Numer. Math, and Advanced Applications (ENUMATH'95), Paris 1995, 18-22.
  • [50] K. Bell. A refined triangular plate bending element. Int. J. Numer. Methods Engrg, 1 (1969), 101-122.
  • [51] T. Belytschko, W. E. Bachrach. Efficient implementation of quadrilaterals with high corse-mesh accuracy. Comput. Methods Appl. Mech. Engrg, 54 (1986), 279-301.
  • [52] T. Belytschko, L. P. Bindeman. Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for non-linear problems. Comput. Methods Appl. Mech. Engrg, 88 (1991), 311-340.
  • [53] T. Belytschko, I. Leviathan. Physical stabilization of the 4-node shell element with one point quadrature. Comput. Methods Appl. Mech. Engrg, 100 (1994), 191-207.
  • [54] T. Belytschko, W. K. Liu, J. S. J. Ong, D. Lam. Implementation and application of a 9-node Lagrange shell element with spurious mode control. Computers and Structures, 20 (1985), 121-128.
  • [55] T. Belytschko, J. S. J. Ong, W. K. Liu. A cosistent control of spurious singular modes in the 9-node Lagrange element for Laplace and Mindlin plate equations. Comput. Methods Appl. Mech. Engrg., 44 (1985), 269-295.
  • [56] T. Belytschko, H. Stolarski, N. Carpenter. A C° triangular plate element with one point quadrature. Int. J. Numer. Methods Engrg, 20 (1984), 787- 802.
  • [57] T. Belytschko, S. A. Tsay, W. K. Liu. A stabilization matrix for the bilinear Mindlin plate element. Comput. Methods Appl. Mech. Engrg, 29 (1981), 313-327.
  • [58] T. Belytschko, B. L. Wong, H. Y. Chiang. Advances in one-point quadrature shell elements. Comput. Methods Appl. Mech. Engrg, 96 (1992), 93-107.
  • [59] M. Bernadou, J. M. Boisserie. Finite Element Method in Thin Shell Theory: Application to Arch Dam Simulations. Birkhauser. Boston 1992.
  • [60] P. Betsch, E. Stein. An assumed strain approach avoiding artificial thickness straining for a 4-node shell element. Comm. Numer. Methods Engrg, 11 (1995), 899-909.
  • [61] M. Bischoff, M. Gee, W. A. Wall, E. Ramm. On conditionong of stiffness Matrices of 3D shell elements. [W:] Book of Abstracts I. 4th EUROMECH Solid Mechanics Conference. Metz (France) 2000, 50.
  • [62] M. Bischoff, E. Ramm, D. Braess. A class of equivalent enhanced assumed strain and hybrid stress finite elements. Computational Mechanics, 22 (1999), 443-449.
  • [63] T. Blacker, T. Belytschko. Superconvergent patch recovery with equilibrium and conjoint interpolation enhancements. Int. J. Numer. Methods Engrg, 37 (1994), 517-536.
  • [64] K. U. Bletzinger. A unified approach for generation of shear-locking free elements in bending : beams, plates and shells. [W:] Book of Abstracts I. 4th EUROMECH Solid Mechanics Conference. Metz (France) 2000, 56.
  • [65] K. U. Bletzinger, M. Bischoff, E. Ramm. A unified approach for shear- locking-free triangular and rectangular shell finite elements. Computers & Structures, 75 (2000), 321-334.
  • [66] J. H. Bramble, T. Sun. A locking-free finite element method for Naghdi shells. J. Comput. Appl. Math., 89 (1998), 119-133.
  • [67] F. Brezzi. On existence, uniqueness and approximation of saddle point problems arising from lagrangean multipliers. RAIRO Anal. Numer., 8 (1974), 129-151.
  • [68] F. Brezzi, K. J. Bathe, M. Fortin. Mixed-interpolated elements for Reissner- Mindlin plates. Int. J. Numer. Methods Engrg, 28 (1989), 1787-1801.
  • [69] B. Budiansky, L. J. Sanders. On the best first order linear shell theory. [W:] Progress in Applied Mechanics. W. Prager Anniversary Volume. MacMillan, New York, 1967, 129-140.
  • [70] D. Bushnell. Computerized analysis of shells - governing equations. Com-puters & Structures, 18 (1984), 471-536.
  • [71] C. Caramanlian. A conforming solution to curved plate bending problems. Int. J. Numer. Methods Engrg, 17 (1981), 879-907.
  • [72] N. Carpenter, T. Beltytschko, H. Stolarski. Improvements in 3-node triangular shell element. Int. J. Nurner. Methods Engrg, 23 (1986), 1643-1667.
  • [73] N. Carpenter, T. Beltytschko, H. Stolarski. Locking and Shear scaling factors in C° bending elements. Computers & Structures, 22 (1986), 39-52.
  • [74] T. Y. Chang, A. F. Saleeb, W. Graf. On a mixed formulation of a 9-node Lagrange shell element. Comput. Methods Appl. Mech. Engrg, 73 (1989), 259-281.
  • [75] D. Chapelle, R. Stenberg. An optimal low-order locking-free finite element method for Reissner-Mindlin plates. Math. Models & Methods Appl Sciences, 8 (1998), 407-430.
  • [76] D. Chapelle, R. Stenberg. Stabilized finite element formulations for shells in a bending dominated state. SIAM J. Numer. Anal., 36 (1998), 32-73.
  • [77] C. Chinosi, L. Delia Croce, T. Scapolla. Hierarchic finite elements for thin plates and shells. Computer Assisted Mechanics and Engineering Sciences, 5 (1998), 151-160.
  • [78] C. Chinosi, L. Delia Croce, T. Scapolla. Numerical results on the locking for cylindrical shells. Computer Assisted Mechanics and Engineering Sciences, 5 (1998), 31-44.
  • [79] J. R. Cho. An hpq-Adaptive Finite Element Method for Hierarchical Modeling of Elastic Structures. Praca doktorska. The Univ. of Texas, Austin 1995.
  • [80] J. R. Cho. A Study of Hierarchical Models of Structres Using Adaptive hp Finite Element Methods. Praca magisterska. The Univ. of Texas, Austin 1993.
  • [81] J. R. Cho, J. T. Oden. A priori error estimations of hp-finite element approximations for hierarchical models of plate- and shell-like structures. Comput Methods Appl. Mech. Engrg, 132 (1996), 135-177.
  • [82] J. R. Cho, J. T. Oden. Locking and boundary layer in hierarchical models for thin elastic structures. Comput. Methods Appl. Mech. Engrg, 149 (1997), 33-48.
  • [83] C. K. Choi, S. H. Kim. Coupled use of reduced integration and non-conforming modes in quadratic Mindlin plate element. Int. J. Numer. Methods Engrg, 28 (1989), 1909-1928.
  • [84] C. K. Choi, S. H. Kim. Reduced integration, non-conforming modes and their coupling in thin plate elements. Computers & Structures, 29 (1988), 57-62.
  • [85] D. Choi. Computations on thin non-inhibited hyperbolic elastic shells. Bench-marks for membrane locking. Math. Methods Appl. Sciences, 22 (1999), 1293-1321.
  • [86] D. Choi, F. J. Palma, E. Sanchez-Palencia. Membrane locking in the fiite element computation of very thin elastic shells. RAIRO Math. Model. Numer. Anal., 32 (1998), 131-152.
  • [87] P. G. Ciarlet. Basic Error Estimates for Elliptic Problems. [W:] Handbook of Numerical Methods, Vol. II. Finite Element Methods. Red. red. P. G. Ciarlet, J. L. Lions. North-Holland, Amsterdam 1991.
  • [88] P. G. Ciarlet. Mathematical Elasticity, vol. 1: Three-Dimensional Elasticity. North-Holland, Amsterdam 1988.
  • [89] P. G. Ciarlet. Plates and Junctions in Elastic Multi-Strucures. Springer- Verlag, Masson. Berlin, Paris 1990.
  • [90] M. A. Crisfield. A four-noded thin-plate bending element using shear con-straints - A modified version of Lyon's element. Comput. Methods Appl. Mech. Engrg, 38 (1983), 93-120.
  • [91] M. A. Crisfield. A quadratic Mindlin element using shear constraints. Computers & Structures, 18 (1984), 833-852.
  • [92] S. Dasgupta, D. Sengupta. A high-order triangular plate bending element revisited. Int. J. Numer. Methods Engrg, 30 (1990), 419-430.
  • [93] M. Dauge, I. Gruais. Edge layers in thin elastic plates. Comput. Methods Appl. Mech. Engrg, 157 (1998), 335-347.
  • [94] M. Dauge, I. Gruais, A. Rossle. The influence of lateral boundary conditions on the asymptotics in the thin elastic plates. SI AM J. Math. Anal., 31 (2000), 305-345.
  • [95] M. Dauge, Z. Yoshibash. Boundary layer realization in thin elastic three- dimensional domains and two-dimensional hierarchic plate models. Int. J. Solids Struct., 37 (2000), 2443-2471.
  • [96] L. Delia Croche, T. Scapolla. High order finite elements for thin to moderately thick plates. Computational Mechanics, 10, 263-279 (1992).
  • [97] L. Demkowicz, A. Bajer, K. Banaś. Geometrical Modeling Package. TICOM Report 92-06. The Texas Institute for Computational Mechanics. The University of Texas at Austin, Austin 1992.
  • [98] L. Demkowicz, K. Banaś. 3D hp Adaptive Package. Report No. 2/1993. Cracow University of Technology. Section of Applied Mathematics. Cracow 1993.
  • [99] L. Demkowicz, P. Devloo, J. T. Oden. On an h-type mesh refinement strategy based on minimization of interpolation errors. Comp. Methods Appl. Mech. Engrg, 53 (1985) 67-89.
  • [100] L. Demkowicz, J. T. Oden, W. Rachowicz, O. Hardy. Towards a universal hp adaptive finite element strategy. Part 1. A constrained approximation and data structure. Comput. Methods Appl. Mech. Engrg, 77 (1989) 79-112.
  • [101] L. Demkowicz, W. Rachowicz, K. Banaś, J. Kucwaj. 2D hp Adaptive Pack¬age (2DhpAP). Report No. 1/1992 . Cracow University of Technology. Section of Applied Mathematics. Cracow 1992.
  • [102] P. Destuynder. A classification of thin shell theories. Acta Applicandae Mathematicae, 4 (1985), 15-63.
  • [103] G. Dhatt, L. Marcotte, Y. Matte. A new triangular discrete Kirchhoff plate/shell element. Int. J. Numer. Methods Engrg, 23 (1986), 453-470.
  • [104] P. Diez, A. Huerta. A unified approach to remeshing strategies for finite element /h-adaptivity. Comput. Methods Appl. Mech. Engrg, 176 (1998) 215-229.
  • [105] E. H. Dill. A triangular finite element for thick and thin plates. Computers & Structures, 35 (1990), 301-308.
  • [106] Y. F. Dong, C. C. Wu, J. A. Teixeira de Freitas. The hybrid stress model for Mindlin-Reissner plates based on stress optimization condition. Computers & Structures, 46 (1993), 877-898.
  • [107] D. A. Dunavant. Economical symmetrical quadrature rules for complete polynomials over a square domain. Int. J. Numer. Methods Engrg, 21 (1985), 1777-1784.
  • [108] D. A. Dunavant. High degree efficient symmetrical gaussian quadrature rules for the triangle. Int. J. Numer. Methods Engrg, 21 (1985), 1129-1148.
  • [109] G. Duvaut, J. L. Lions. Inequalities in Mechanics and Physics. Springer- Verlag, Berlin 1976.
  • [110] E. Dvorkin, K. J. Bathe. A continuum mechanics based four-node shell element for general nonlinear analysis. Engineering Computations, 1 (1984), 77-88.
  • [111] A. C. Eringen. Nonlinear Theory of Continuous Media. McGraw-Hill, New York 1962.
  • [112] M. Fafard, G. Dhatt, J. L. Batoz. A new discrete Kirchhoff plate/shell element with updated procedures. Computers & Structures, 31 (1989), 591- 606.
  • [113] R. S. Falk, T. Tu. Locking-free finite elements for the Reissner-Mindlin plate. Math. Comput., 69 (2000), 911-928.
  • [114] W. Fliigge. Statik and Dynamik der Schalen. Julius Springer Verlag, Berlin 1934.
  • [115] W. Fliigge. Tensor Analysis and Continuum Mechanics. Springer-Verlag, Berlin 1972.
  • [116] B. Fraeijs de Veubeke. Displacement and equilibrium models in finite element method. [W:] Stress Analysis. Red. red. 0. C. Zienkiewicz, G. S. Holister. Wiley, Chichester 1982, 1-20.
  • [117] U. Gabbert, K. Graeff-Weinberg. Adaptive local-global analysis by pNh transition elements. Technische Matematik, 19 (1999), 115-126.
  • [118] J. Gago, D. W. Kelly, 0. C. Zienkiewicz, I. Babuska. A posteriori error analysis and adaptive process in the finite element method. Part II: Adaptive mesh refinement. Int. J. Numer. Methods Engrg, 19 (1983), 1621-1656.
  • [119] M. Gellert. A new method for derivation of locking-free plate bending elements via mixed/hibrid formulation. Int. J. Numer. Methods Engrg, 26 (1988), 1185-1200.
  • [120] K. Gerdes, A. M. Matache, C. Schwab. Analysis of membrane locking in hp FEM for a cylindrical shell. ZAMM, 78 (1998), 663-686.
  • [121] A. L. Goldenveizer. Internal and boundary calculations of thin elastic bodies. PMM J. Appi Math. Mech., 59 (1995), 973-985.
  • [122] W. Gui, I. Babuska. The h, p and h-p versions of the finite element methods in one dimension. Part 1. The error analysis of the p-version. Numer. Math., 49 (1986), 577-612.
  • [123] W. Gui, I. Babuska. The h, p and h-p versions of the finite element methods in one dimension. Part 2. The error analysis of the h and h-p versions. Numer. Math., 49 (1986), 613-657.
  • [124] W. Gui, I. Babuska. The h, p and h-p versions of the finite element methods in one dimension. Part 3. Adaptive h-p version. Numer. Math., 49 (1986), 659-683.
  • [125] B. Guo, I. Babuska. The h-p version of finite element method. Part 1. The basic approximation results. Comp. Mechanics, 1 (1986), 21-41.
  • [126] B. Guo, I. Babuska. The h-p version of finite element method. Part 2. General results and applications. Comp. Mechanics, 1, (1986) 203-220.
  • [127] A. Habbal, D. Chenais. Deterioration of a finite element method for arch structures when the thickness goes to zero. Numer. Math., 62 (1992), 321- 341.
  • [128] H. Hakula, Y. Leino, J. Pitkaranta. Scale resolution, locking and high-order finite element modelling of shells. Comput. Methods Appi Mech. Engrg, 133 (1996), 157-182.
  • [129] Handbook of Computational Solid Mechanics. Red. M. Kleiber. Springer- Verlag, Berlin 1998.
  • [130] M. Harnau, K. Shweizerhof, R. Hauptmann. On solid-shell elements with linear and quadratic shape functions for small and large deformations. [W:] CD-Rom Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering. Barcelona 2000, 1-20.
  • [131] M. Hauptmann, K. Schweizerhof. A systematic development of solid-shell element formulation for linear and nonlinear analyses employing only displacement degrees of freedom. Int. J. Numer. Methods Engrg, 42 (1998), 49-70.
  • [132] F. B. Hildebrand, E. Reissner, G. B. Thomas. Notes on the Foundations of the Theory of Small Displacements of Orthotropic Shells. NACA Technical Note 1833, NACA, 1949.
  • [133] E. Hinton, N. Bicanic. A comparison of lagrangean and serendipity Mindlin plate elements for free vibration analysis. Computers & Structures, 10 (1979), 483-493.
  • [134] S. Holzer, E. Rank, H. Werner. An implementation of the hp-version of the finite element method for Reissner-Mindlin plate problems. Int. J. Numer. Methods Engrg, 30 (1990), 459-471.
  • [135] H. C. Huang. Elastic and elasto-plastic analysis of shell structures using the assumed strain elements. Computers & Structures, 33 (1989), 327-335.
  • [136] H. C. Huang, E. Hinton. A new nine-node degenerated shell element with enhanced membrane and shear interpolation. Elastic and elasto-plastic analysis of shell structures using the assumed strain elements. Int. J. Numer. Methods Engrg, 22 (1986), 73-92.
  • [137] H. C. Huang, E. Hinton. A nine-node lagrangean Mindlin plate element with enhanced shear interpolation. Computers & Structures, 1 (1984), 369- 379.
  • [138] T. J. R. Hughes. The Finite Element Method. Prentice Hall Int., Stanford 1987.
  • [139] T. J. R. Hughes, M. Cohen. The "heterosis" finite element for plate bending. Computers & Structures, 9 (1978), 445-450.
  • [140] T. J. R. Hughes, M. Cohen, M. Harou. Reduced and selective integration technique in the finite element analsis of plates. Nuclear Engrg Design, 46 (1978), 203-222.
  • [141] T. J. R. Hughes, W. K. Liu. Nonlinear finite element analysis of shells: Part I. Three-dimensional shells. Comput. Methods Appl. Mech. Engrg, 26 (1981), 331-362.
  • [142] T. J. R. Hughes, R. L. Taylor, W. Konoknukulchai. A simple and efficient finite element for plate bending. Int. J. Numer. Methods Engrg, 11 (1977), 1529-1543.
  • [143] T. J. R. Hughes, T. E. Tezduyar. Finite elements based upon Mindlin plate theory with particular reference to four-node bilinear isoparametric element. (ASMEJ J. Appl. Mech., 48 (1981), 587-596.
  • [144] B. M. Irons. A conforming quartic triangular element for plate bending. Int. J. Numer. Methods Engrg, 1 (1969), 29-46.
  • [145] O. P. Jacquotte, J. T. Oden. An accurate and efficient a posteriori control of hourglass instabilities in underintegrated linear and nonlinear elasticity. Comput. Methods Appl. Mech. Engrg, 55 (1986) 105-128.
  • [146] 0. P. Jacquotte, J. T. Oden. Analysis of hourglass instabilities and control in underintegrated finite element methods. Comput. Methods Appl. Mech. Engrg, 44 (1984) 339-363.
  • [147] F. John. Estimates for the derivatives of the stresses in a thin shell and interior shell equations. Comm. Pure and Appl. Math., 24 (1965), 235-267.
  • [148] D. S. Kang, T. H. H. Pian. A 20-dof hybrid stress general shell element. Computers & Structures, 30 (1988), 789-794.
  • [149] C. Karakostas, D. Talaslidis, G. A. Wempner. Triangular C° bending elements based on Hu-Washizu principle and orthogonality conditions. Int. J. Numer. Methods Engrg, 36 (1993), 181-200.
  • [150] P. Karamian, J. Sanchez-Hubert, E. Palencia. A model problem for boundary layers of thin elastic shells. ESAIM Math. Model. Numer. Anal., 34 (2000), 1-30.
  • [151] E. P. Kasper, R. L. Taylor. A mixed-enhanced strain method Part I: Geometrically linear problems. Computers & Structures, 75 (2000), 237-250.
  • [152] E. P. Kasper, R. L. Taylor. A mixed-enhanced strain method Part I: Geometrically nonlinear problems. Computers & Structures, 75 (2000), 251- 260.
  • [153] H. Kebari. A one point integrated assumed strain 4-node Mindlin plate element. Engineering Computations, 7 (1990) 284-290.
  • [154] D. W. Kelly. The self-equilibration of residuals and complementary a posteriori error estimates in the finite element method. Int. J. Numer. Methods Engrg, 20 (1984), 1491-1506.
  • [155] D. W. Kelly, J. Gago, O. C. Zienkiewicz, I. Babuska. A posteriori error analysis and adaptive process in the finite element method. Part I: Error analysis. Int. J. Numer. Methods Engrg, 19 (1983), 1593-1619.
  • [156] F. van Keulen. A geometrically nonlinear curved shell element with constant stress resultants. Comput. Methods Appl. Mech. Engrg, 106 (1993) 315-352.
  • [157] F. van Keulen. On Refined Triangular Plate and Shell Elements. Praca doktorska. Technische Universiteit Delft, Delft 1993.
  • [158] F. van Keulen, A. Bout, L. J. Ernst. Nonlinear shell analysis using a curved triangular element. Comput. Methods Appl. Mech. Engrg, 103 (1993) 315- 344.
  • [159] F. Kikuchi. Accuracy of some finite element models for arch problems. Comput Methods Appl. Mech. Engrg, 35 (1982), 315-345.
  • [160] G. Kirchhoff. Uber das Gleichgewicht und die Bewegung einer elastischen Scheibe. Crelles J40 (1850), 51-88.
  • [161] M. Kleiber. Metoda elementów skończonych w nieliniowej mechanice kontinuum. PWN, Warszawa 1985.
  • [162] R. J. Knops, L. E. Payne. Uniqueness Theorems in Linear Elasticity. Springer Verlag, Berlin 1971.
  • [163] W. T. Koiter. A consistent first approximation in the general theory of thin elastic shells. Proc. of IUTAM Symposium on the Theory of Thin Elastic Shells, Delft 1959. North Holland, Amsterdam 1960, 12-33.
  • [164] W. T. Koiter. On the nonlinear theory of thin elastic shells. Proc. Kon. Ned. Akad. Wetensh., B 69 (1966), 1-54.
  • [165] J. Korelc, P. Wriggers. Improved enhanced strain four-node element with Taylor expansion of the shape functions. Int. J. Numer. Methods Engrg, 40 (1997), 407-421.
  • [166] H. Kraus. Thin Elastic Shells. Wiley, New York 1967.
  • [167] B. Kucieńska. Podprogram komputerowy do rozwiązywania nieliniowych równań algebraicznych i jego połączenie z istniejącym pakietem programów adaptacyjnych. Nr arch. 385/98. Instytut Maszyn Przepływowych PAN, Gdańsk 1998.
  • [168] P. Ladeveze, N. Moes. A posteriori constitutive relation error estimation for nonlinear finite element analysis. [W:] Advances in Adaptive Computational Methods in Mechanics. Red. red. P. Ladeveze, J. T. Oden. Elsevier, Amsterdam 1998, 231-256.
  • [169] P. G. Lee, H. C. Sin. Locking-free straight beam element based on curvature. Comm. Numer. Methods Engrg, 9 (1993), 1005-1011.
  • [170] S. W. Lee, C. C. Dai, C. H. Yeom. A triangular finite element for thin plates and shells. Int. J. Numer. Methods Engrg, 921 (1985), 1813-1831.
  • [171] Y. Leino, J. Pitkaranta. On membrane locking of hp finite elements in a cylindrical shell problem. Int. J. Numer. Methods Engrg, 37 (1994), 1053- 1070.
  • [172] D. Lemosse, G. Dhatt. A study on 8 nodes 3D finite element model for shell analysis. [W:] Book of Abstracts I. 4th EUROMECH Solid Mechanics Conference. Metz (France) 2000, 57.
  • [173] L. Li. Discretization of the Timoshenko beam problem by p and hp versions of the finite element method. Numer. Math., 57 (1991), 413-420.
  • [174] L. Y. Li, P. Bettes. Notes on mesh optimal criteria in adaptive finite element computations. Comm. Numer. Methods Engrg, 11 (1995), 911-915.
  • [175] L. Y. Li, P. Bettes, J. W. Bull, T. Bond, I. Applegarth. Theoretical formulations for adaptive finite element computations. Comm. Numer. Methods Engrg, 11 (1995), 857-804.
  • [176] W. K. Liu, T. Belytschko, J. S. J. Ong, S. E. Law. Use of stabilization matrices in nonlinear analysi. Engineering Computations, 2 (1985), 47-55.
  • [177] W. K. Liu, J. S. J. Ong, R. A. Uras. Finite element stabilization matrices - A unification approach. Comput. Methods Appl. Mech. Engrg, 53 (1985), 13-45.
  • [178] K. H. Lo, R. M. Christensen, E. M. Wu. A high-order theory of plate deformation – Part 1: Homogeneous plates. (ASME) J. Appl. Mech., 44 (1977), 663-668.
  • [179] A. E. Lobkovsky. Boundary layer analysis of ridge singularity in a thin plate. Physical Review E, 53 (1996), 3750-3759.
  • [180] A. E. H. Love. The small free vibrations and deformation of thin elastic shells. Phil. Trans. Royal Soc., London, Ser. A, 181 (1886), 491-546.
  • [181] H. X. Lu, S. N. Xu. An effective quadrilateral plate bending element. Int. J. Numer. Methods Engrg, 28 (1989), 1145-1160.
  • [182] L. P. R. Lyons. A General finite Element System with Special Reference to the Analysis of Cellular Structures. Praca doktorska. Imperial College of Science and Technology, London 1977.
  • [183] R. H. MacNeal. Derivation of element stiffness matrices by assumed strain distribution. Nuclear Engrg Design, 70 (1982), 3-12.
  • [184] D. S. Malkus, T. J. R. Hughes. Mixed finite element methods - reduced and selective integration techiques: a unification of concepts. Comput. Methods Appl. Mech. Engrg, 15 (1978), 63-81.
  • [185] Mechanika techniczna, T. I. Podstawy mechaniki. Red. A. Żorski. PWN, Warszawa 1985.
  • [186] Mechanika techniczna, T. IV. Sprężystość. Red. M. Sokołowski. PWN, Warszawa 1978.
  • [187] Mechanika techniczna, T. XI. Komputerowe metody mechaniki ciał stałych. Red. M. Kleiber. PWN, Warszawa 1995.
  • [188] R. V. Milford, W. C. Schnobrich. Degenerated isoparametric finite elements using explicit integration. Int. J. Numer. Methods Engrg, 23 (1986), 133- 154.
  • [189] C. Militello, C. A. Felippa. A variational justification of the assumed natural strain formulation of finite elements - II. The C° four node plate element. Computers & Strucures, 34 (1990), 438-444.
  • [190] C. Militello, C. A. Felippa. The first ANDES elements: 9-dof plate bending triangles. Comput. Methods Appl. Mech. Engrg, 93 (1991), 217-246.
  • [191] R. D. Mindlin. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. (ASME) J. Appl. Mech., 73 (1951), 31-38.
  • [192] S. S. Murthy, R. H. Gallagher. A triangular thin-shell finite element based on discrete Kirchhoff constraints. Comput. Methods Appl. Mech. Engrg, 54 (1986), 197-222.
  • [193] B. P. Naganarayana, G. Prathap, B. Dattaguru, T. S. Ramamurty. A field-consistent and variationally correct representation of transverse shear strains in the nine-noded plate element. Comput. Methods Appl. Mech. Engrg, 97 (1992), 355-374.
  • [194] P. M. Naghdi. On the theory of thin elastic shells. Q. Appl. Math., 14 (1957), 369-380.
  • [195] S. Noamis, P. C. M. Lau. Computational Tensor Analysis of Shell Structures. Springer-Verlag, Berlin 1990.
  • [196] A. K. Noor. Multifield (mixed and hybrid) finite element models. [W:] State- of-the-Art Surveys on Finite Element Technology. Red. red. A. Iv. Noor, W. D. Pilkey. ASME, New York 1983, 127-162.
  • [197] A. K. Noor, C. M. Anderson. Mixed models and reduced/selective integration models for non-linear shell analysis. Int. J. Numer. Methods Engrg, 18 (1982), 1429-1454.
  • [198] W. Nowacki. Teoria sprężystości. PWN, Warszawa 1973.
  • [199] J. T. Oden. Error Estimation and Control in Computational Fluid Dynamics. The O. C. Zienkiewicz Lecture, MAFELAP VIII. Brunnel Univ., Uxbridge 1993.
  • [200] J. T. Oden. The best FEM. Finite Elem. Anal Des., 7 (1990) 103-114.
  • [201] J. T. Oden, G. F. Carey. Finite Elements: Mathematical Aspects IV. Prentince-Hall, Englewood Cliffs 1983.
  • [202] J. T. Oden, L. Demkowicz, W. Rachowicz, T. A. Westermann. Towards a universal hp adaptive finite element strategy. Part 2. A posteriori error estimation. Comput. Methods Appl. Mech. Engrg, 77 (1989) 113-180.
  • [203] J. T. Oden, J. R. Cho. Adaptive hpq finite element methods of hierarchical models for plate- and shell-like structures. Comput. Methods Appl. Mech. Engrg, 136 (1996), 317-345.
  • [204] J. T. Oden, A. Patra. A Parallel Adaptive Strategy for hp Finite Element Computations. TIC AM Report 94-01. The Texas Institute for Computational an Applied Mathematics. The Univ. of Texas, Austin 1994.
  • [205] H. S. Oh, J. K. Lim. Modified h-method with directional error estimate for finite element stress analysis. Comuters & Structures, 65 (1997), 191-204.
  • [206] E. Oñate, G. Bugeda. A study of mesh optimality criteria in adaptive finite element analysis. Engineering Computations, 10 (1993), 307-321.
  • [207] E. Oñate, F. Zarate. Rotation-free triangular plate and shell elements. Int. J. Numer. Methods Engrg, 47 (2000), 557-603.
  • [208] W. Olszewski, G. Zboiński. Kierunkowa analiza adaptacyjna trójwymiarowych problemów teorii sprężystości. Nr arch. 1350/01. Instytut Maszyn Przepływowych PAN, Gdańsk 2001.
  • [209] S. Oral, A. Barut. A shear-flexible facet shell element for large deflection and instability analysis. Comput. Methods Appl. Mech. Engrg, 93 (1991), 415-431.
  • [210] P. Papadopoulos, R. L. Taylor. A triangular element based on Reissner- Mindlin plate theory. Int. J. Numer. Methods Engrg, 30 (1990), 1029-1049.
  • [211] H. Parish. A continuum-based shell theory for non-linear applications. Int. J. Numer. Methods Engrg, 38 (1995), 1855-1883.
  • [212] H. Parish. A critical survey of 9-node degenerated shell element with special emphasis on thin shell application and reduced integration. Comput. Methods Appl Mech. Engrg, 20 (1979), 323-350.
  • [213] K. C. Park, D. L. Flaggs. A symbolic Fourier synthesis of one-point integrated quadrilateral plate element. Comput. Methods Appl Mech. Engrg, 48 (1985), 203-236.
  • [214] K. C. Park, G. M. Stanley. A curved C'0 shell elements based on assumed natural-coordinate strains. (ASME) J. Appl. Mech., 53 (1986), 278-290.
  • [215] F.S. Pawsey, R. W. Clough. Improved numerical integration of thick shell finite elements. Int. J. Numer. Methods Engrg, 3 (1971), 575-586.
  • [216] U. Perego. A variationally consistent generalized variable formulation for enhanced strain finite elements. Comm. Numer. Methods Engrg, 16 (2000), 151-163.
  • [217] J. Pieter. Ogólna metodologia pracy naukoviej. Ossolineum, Wrocław 1967.
  • [218] J. Pieter. Zarys metodologii pracy naukowej. PWN, Warszawa 1975. •
  • [219] W. Pietraszkiewicz. Finite Rotations and Lagrangean Description in the Non-Linear Theory of Shells. Polish Scientific Publishers, Warszawa 1979.
  • [220] R. Piltner, R. L. Taylor. Triangular finite elements with rotational degrees of freedom and enhanced strain modes. Computers & Structures, 75 (2000), 361-368.
  • [221] P. M. Pinsky, R. V. Jasti. A mixed finite element formulation for Reissner- Mindlin plates based on the use of bubble function. Int. J. Numer. Methods Engrg, 28 (1989), 1677-1702.
  • [222] P. M. Pinsky, R. V. Jasti. On use of Lagrange multiplier compatible modes for controlling accuracy and stability of mixed shell finite elements. Comp. Methods Appl. Mech. Engrg, 85 (1991), 151-182.
  • [223] J. Pitkaranta. Analysis of some low-order finite element schemes for Mindlin-Reissner and Kirchhoff plates. Numer. Math., 53 (1988), 237-254.
  • [224] J. Pitkaranta. The problem of membrane locking in finite element analysis of cylindrical shells. Numer. Math., 61 (1992), 523-542.
  • [225] G. Prathap. A simple plate/shell triangle. Int. J. Numer. Methods Engrg, 21 (1985), 1149-1156.
  • [226] G. Prathap, G. B. Bhashyman. Reduced integration and shear-flexible beam element. Int. J. Numer. Methods Engrg, 18 (1982), 195-210.
  • [227] G. Prathap, S. Viswanath. An optimally integrated four-node quadrilateral plate bending element. Int. J. Numer. Methods Engrg, 19 (1983), 831-840.
  • [228] E. D. L. Pugh, E. Hinton, O. C. Zienkiewicz. A study of quadrilateral plate bending elements with reduced integration. Int. J. Numer. Methods Engrg, 12 (1978), 1059-1079.
  • [229] W. Rachowicz, J. T. Oden, L. Demkowicz. Towards a universal hp adaptive finite element strategy. Part 3. Design of h-p meshes. Comp. Methods Appl. Mech. Engrg, 77 (1989) 181-212.
  • [230] J. Rakowski. Then interpretation of the shear locking in beam elements. Computers & Structures, 37 (1990), 769-776.
  • [231] J. Rakowski. A critical analysis of quadraticbeam finite elements. Int. J. Numer. Methods Engrg, 31 (1991), 949-966.
  • [232] J. Rakowski. A new methodology of evaluation of C° bending finite elements. Comput. Methods Appl. Mech. Engrg, 91 (1991), 1327-1338.
  • [233] E. Rank, I. Babuska. An expert system for the optimal mesh design in the hp-version of the finite element method. Int. J. Numer. Methods Engrg, 24 (1987), 2087-2106.
  • [234] E. Rank, O. C. Zienkiewicz. A simple error estimator in the finite element method. Comm. Appl. Numer. Methods, 3 (1987), 243-249.
  • [235] B. D. Reddy. Convergence of mixed finite element approximations for the shallow arch problem. Numer. Math., 53 (1988), 687-699.
  • [236] J.N. Reddy. A simple higher-order theory for laminated composite plates. (ASME) J. Appl. Mech., 37 (1984), 745-752.
  • [237] S. Reese, P. Wriggers. A stabilization technique to avoid hourglassing in finite elasticity. Int. J. Numer. Methods Engrg, 48 (2000), 79-109.
  • [238] S. Reese, P. Wriggers, B. D. Reddy. A new locking-free brick element technique for large deformation problems in elasticity. Computers & Structures, 75 (2000), 291-304.
  • [239] E. Reissner. Stress-strain relations in the theory of thin elastic shells. J. Math. Phys., 31 (1952), 109-199.
  • [240] E. Reissner. The effects of transverse shear deformation 011 the bending of elastic plates. (ASME) J. Appl. Mech., 67 (1945), 69-77.
  • [241] J. J. Rhiu, S. W. Lee. A new mixed formulation of finite element analysis of thin shell structures. [W:] Hybrid and Mixed Finite Element Methods. Red. red. R. L. Spilker, K. W. Reed. ASME, New York 1985, 25-38.
  • [242] R. Rodriguez. Some remarks on Zienkiewicz-Zhu estimator. Int. J. Numer. Methods in PDE, 10 (1994), 625-635.
  • [243] A. F. Saleeb, T. Y. Chang. On the hybrid-mixed formulation of C° curved beam elements. Comput. Methods Appl. Mech. Engrg, 60 (1987), 95-121.
  • [244] A. F. Saleeb, T. Y. Chang, S. Yingyeunyong. A mixed formulation of C°- linear triangular plate/shell element - The role of edge shear constraints. Int. J. Numer. Methods Engrg, 26 (1990), 407-446.
  • [245] T. Scapolla, L. Delia Croche. On robustness of hierarchic finite elements for Reissner-Mindlin plates. Cornp. Methods Appl. Mech. Engrg, 101, 43-60, 1992. 10, 263-279 (1992).
  • [246] C. Schwab. A-posteriori modeling error estimation for hierarchic plate models. Numer. Math., 74 (1996), 221-259.
  • [247] C. Schwab, p and hp FEM. Oxford University Press, Oxford 1998.
  • [248] C. Schwab, M. Suri. Locking and boundary layer effects in the finite element approximation of the Reissner-Mindlin plate model. Proc. Symp. Appl. Math., 48, (1994), 367-371.
  • [249] C. Schwab, M. Suri. The p and hp versions of the finite element method for problems with boundary layers. Math. Comput65, (1996), 1403-1429.
  • [250] C. Schwab, M. Suri, C. Xenophontos. The hp finite element method for problems in mechanics with boundary layers. Comput. Methods Appl. Mech. Engrg, 157, (1998), 311-333.
  • [251] C. Schwab, S. Wright. Boundary layers in hierarchical beam and plate models, report. J. Elasticity, 38 (1995), 1-40.
  • [252] L. S. Scott, M. Vogelius. Norm Estimates for a Maximal Right Inverse of the Divergence Operator in Spaces of Picewise Polynomials. RAIRO Math. Modeling Numer. Anal., 19 (1989), 11-143.
  • [253] L. I. Sedov. Mechanika splosnoj sredy, T. I. Nauka, Moskva 1973.
  • [254] L. I. Sedov. Mechanika splosnoj sredy, T. II. Nauka, Moskva 1973.
  • [255] G. I. Shishkin. Grid approximation of singularly perturbed parabolic equations with internal layers. Soviet J. Numer. Anal. Math. Modelling, 3, (1988), 393-407.
  • [256] J. C. Simo, D. D. Fox. M. S. Rifai. On a stress resultant geometrically exact shell model. Part II. The linear theory; Computational aspects. Comput. Methods Appl. Mech. Engrg, 73, (1989), 53-92.
  • [257] J. C. Simo, D. D. Fox, M. S. Rifai. On a stress resultant geometrically- exact shell model. Part III. Computational aspects of the non-linear theory. Comput. Methods Appl. Mech. Engrg, 79, (1990), 21-70.
  • [258] R. L. Spilker. An invariant eight-nocle hybrid stress element for thin and thick multilayer plates. Int. J. Numer. Methods Engrg, 20, (1984), 573-587.
  • [259] R. L. Spilker, D. M. Jakobs, B. E. Engelman. Efficient hybrid stress isoparametric elements for moderately thick and thin multilayer plates. [W:] Hybrid and Mixed Finite Element Methods. Red. red. R. L. Spilker, K. W. Reed. ASME, New York 1985.
  • [260] G. Stanley, I. Levit, B. Stehlin, B. Hurlbut. Adaptive finite element strategies for shell structures. [W:] Proc. 33rd, AIAA SDM Conference. AIAA- 92-2292. Dallas, TX (USA) 1992, 1-19.
  • [261] E. Stein, R. Ahmad. An equilibrium method for stress calculation using finite element displacement model. Comput. Methods Appl. Mech. Engrg, 10 (1977), 175-198.
  • [262] E. Stein, S. Ohnimus. Anisotropic discretization- and model-error estimation in solid mechanics by local Neumann problems. Comput. Methods Appl. Mech. Engrg, 176 (1999), 363-385.
  • [263] E. Stein, S. Ohnimus. Coupled model- and solution adaptivity in the finite element method. Comput. Methods Appl. Mech. Engrg, 150 (1997), 327- 350.
  • [264] E. Stein, S. Ohnimus. Dimensional adaptivity in linear elasticity with hierarchical test-spaces for h- and p-refinement processes. Engineering Computations, 12 (1996), 107-119.
  • [265] E. Stein, S. Ohnimus. Equilibrium method for postprocessing and error estimation in the finite element method. Computer Assisted Mechanics and Engineering Sciences, 4 (1997), 645-666.
  • [266] R. Stenberg, M. Suri. Mixed hp Finite Elements for Plates. SUR 94-01. Univ. of Maryland. Department of Mathematics, Catonsville 1994.
  • [267] H. Stolarski, T. Belytschko. Shear and membrane locking in curved C° elements. Comput. Methods Appl. Mech. Engrg, 41 (1983), 279-296.
  • [268] H. Stolarski, T. Belytschko, N. Carpenter, J. M. Kennedy. A simple triangular curved shell element. Engineering Computations, 1 (1984), 210-218.
  • [269] H. Stolarski, T. Belytschko, S. H. Lee. A review of shell finite elements and corotational theories. Computational Mechanics Advances (w druku).
  • [270] H. Stolarski, N. Carpenter, T. Belytschko. A Kirchhoff-mode method for C'° bilinear and serendipity plate elements. Comput. Methods Appl. Mech. Engrg, 50 (1985), 121-145.
  • [271] H. Stolarski, M. Y. M. Chiang. Assumed strain formulation for triangular C° plate elements based 011 a weak form of the Kirchhoff constraints. Int. J. Numer. Methods Engrg, 28 (1989), 2323-2338.
  • [272] H. Stolarski, M. Y. M. Chiang. Thin plate elements with relaxed Kirchhoff constraints. Int. J. Numer. Methods Engrg, 26 (1988), 913-933.
  • [273] M. Suri. Analytical and computational assessment of locking in the hp finite element method. Comput. Methods Appl. Mech. Engrg, 133 (1996), 347-371.
  • [274] M. Suri. A Reduced Constrint hp Finite Element Method for Shell Problems. SUR 94-02. Univ. of Maryland. Department of Mathematics and Statistics, Baltimore 1994.
  • [275] M. Suri, I. Babuska, M. Schwb. Locking effects in finite element approximation of plate problems. Math. Comput., 64 (1995), 461-482.
  • [276] B. A. Szabo. Estimation and control of error based on p-convergence. [W:] Accuracy Estimates and Adaptive Refinements in Finite Element Computations. Red. red. I. Babuska, O. C. Zienkiewicz, J. Gago, E. R. de A. Oliveira. John Wiley & Sons, New York 1986, 115-131.
  • [277] B. A. Szabo. Mesh design for p-version of the finite element method. Comp. Methods Appl. Mech. Engrg, 55 (1986), 181-197.
  • [278] B. A. Szabo, I. Babuska. Finite Element Analysis. John Wiley & Sons Inc., New York 1991.
  • [279] B. A. Szabo, G. J. Sahrmann. Hierarchic plate and shell models based on p-extension. Int. J. Numer. Methods Engrg, 26 (1988), 1855-1881.
  • [280] K. Y. Sze. On immunizing five-beta hybrid-stress element models from "trapezoidal locking" in practical analyses. Int. J. Numer. Methods Engrg) 47 (2000), 907-920.
  • [281] K. Y. Sze, L. Q. Yao, Y. Iv. Cheung. A hybrid-stabilized solid-shell element with particular reference to laminated structures. [W:] CD-Rom Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering. Barcelona 2000, 1-19.
  • [282] D. Talaslidis, G. A. Wempner. The linear isoparametric triangular element: theory and application. Comput. Methods Appl. Mech. Engrg, 103 (1993), 375-397.
  • [283] M. W. Taylor, V. V. Vasiliev, D. A. Dillard. On the problem of shear- locking in finite elements based on shear deformable plate theory. Int. J. Solids Struct., 34 (1997), 859-875.
  • [284] R. L. Taylor, F. Auricchio. Linked interpolation for Reissner-Mindlin plate elements: Part II - A simple triangle. Int. J. Numer. Methods Engrg, 36 (1993), 3057-3066.
  • [285] R. L. Taylor, 0. C. Zienkiewicz, J. C. Simo, A. Chan. The patch test - a condition for assessing FEM convergence. Int. J. Numer. Methods Engrg, 22 (1986), 39-62.
  • [286] A. Tessler. A C°-anisoparametric three-node shallow shell element. Comput. Methods Appl. Mech. Engrg, 78 (1990), 89-104.
  • [287] A. Tessler, S. B. Dong. On a hierarchy of conforming Timoshenko beam elements. Computers & Structures, 14 (1981), 335-344.
  • [288] A. Tessler, T. J. R. Hughes. An improved treatment of transverse shear in Mindlin-type four-node quadrilateral element. Comput. Methods Appl. Mech. Engrg, 39 (1983), 311-355.
  • [289] A.Tessler, T. J. R. Hughes. The three-node Mindlin plate element with improved transverse shear. Comput. Methods Appl. Mech. Engrg, 50 (1985), 71-101.
  • [290] S. Timoshenko, J. N. Goodier. Theory of Elasticity. McGraw-Hill, New York 1951.
  • [291] S. Timoshenko, S. Woinowsky-Krieger. Theory of Plates and Shells. McGraw-Hill, New York 1959.
  • [292] I. Titeux. Geometric singularity on the lateral edge of a bending plate. Math. Models & Methods Appl. Sciences, 6 (1996), 569-585.
  • [293] U. Tsach. Locking of thin plate/shell elements. Int. J. Numer. Methods Engrg, 17, (1981) 633-644.
  • [294] R. Verfurth. A review of a posteriori error estimation techniques for elasticity problems. Comput. Methods Appl. Mech. Engrg, 176 (1999), 419-440.
  • [295] B.Verhegghe, G. H. Powell. Control of zero-energy modes in 9-node plane element. Int. J. Numer. Methods Engrg, 23 (1986), 863-869.
  • [296] M. Vogelius. An analysis of the p-version of the finite element method for nearly incompressible materials. Uniformly valid, optimal error estimates. Numer. Math., 41 (1983), 19-37.
  • [297] M. Vogelius, I. Babuska. On a dimensional reduction method: I. The optimal selection of basis functions. Math. Comput., 37 (1981), 31-46.
  • [298] R. Vulanovic, D. Herceg, N. Petrovic. On the etrapolation for a singularly perturbed boundary value problem. Computing, 36 (1986), 69-79.
  • [299] W. A. Wall, M. Gee, E. Ramm, M. BischofF. Tuning of 3D shell model in nonlinear statics and dynamics. [W:] Abstract book of 20th International Congress of Theoretical and Applied Mechanics. Chicago 2000, 224.
  • [300] W. A. Wall, E. Ramm. A coupled fluid structure environment with a three- dimensional shell model. [W:] CD-Rom Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering. Barcelona 2000, 1-22.
  • [301] X. J. Wang, T. Belytschko. A study of stabilization and projection in the 4-node Mindlin Plate element. Int. J. Numer. Methods Eiigrg, 28 (1989), 2223-2238.
  • [302] S. L. Weissman, R. L. Taylor. Mixed formulations for plate bending elements. Comput. Methods Appl. Mech. Engrg, 94 (1992), 391-427.
  • [303] S. L. Weissman, R. L. Taylor. Resultant fields for mixed plate bending elements. Comput. Methods Appl. Mech. Engrg, 79 (1990), 321-355.
  • [304] G. Wempner. Mechanics of solids, with applications to thin bodies. McGraw- Hill, New York 1973.
  • [305] G. Wempner, J. T. Oden, D. A. Ivross. Finite element analysis of thin shells. Journal of the Engineering Mechanics Division (ASCE), 94 (1968), EM 6, 1273-1294.
  • [306] G. Wempner, D. Talaslidis, C. M. Hwang. A simple and efficient approximation of shells via finite quadrilateral elements. (ASME) J. Appl Mech., 49 (1982), 115-120.
  • [307] N. E. Wiberg, F. Abdulwahab. Patch recovery based on superconvergent derivatives and equilibrium. Int. J. Numer. Methods Engrg, 36 (1993), 2703-2724.
  • [308] N. E. Wiberg, F. Abdulwahab, S. Ziukas. Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions. Int. J. Numer. Methods Engrg, 37 (1994), 3417-3440.
  • [309] P. Wriggers, U. Hueck. A formulation of the QS6 element for large elastic deformations. Int. J. Numer. Methods Engrg, 39 (1996), 1437-1454.
  • [310] C. A. Xenophontos. The hp finite element method for singularly perturbed problems in smooth domain. Math. Models & Methods Appl. Sciences, 8 (199S), 299-326.
  • [311] F. G. Yuan, R. E. Miller. A cubic triangular finite element for flat plates with shear. Int. J. Numer. Methods Engrg, 28 (1989), 109-126.
  • [312] S. M Yunus, T. P. Pawlak, M. J. Wheeler. Application of Zienkiewicz-Zhu error estimator for plate and shell analysis. Int. J. Numer. Methods Engrg, 29 (1990), 1281-1298.
  • [313] F. Zarate, E. Oriate, F. Flores. Advances in the development and application of rotation-free triangles. [W:] Book of Abstracts of European Congress on Computational Methods in Applied Sciences and Engineering. Barcelona 2000, 155.
  • [314] G. Zboihski. Application of a new thick shell finite element for analysis of long turbine blades. [W:] Proc. 17th International Seminar on Modal Analysis. Leuven (Belgium) 1992, 977-993.
  • [315] G. Zboiński. The incremental variational principle and finite element displacement approximation for the frictional contact problem of linear elasticity. Int. J. Non-Linear Mechanics, 28 (1993), 13-28.
  • [316] G. Zboiński. The incremental variational principles for frictional contact problems of linear elasticity. Journal of Applied Mechanics, 60 (1993), 982- 985.
  • [317] G. Zboiński. An Adaptive 3D-Based hp Finite Element for Plate and Shell Analysis. TICAM Report 95-10. The Texas Institute for Computational and Applied Mathematics. The University of Texas at Austin, Austin 1994.
  • [318] G. Zboiński. Derivation of the variational inequalities of the incremental frictional elastic contact problems. Archives of Mechanics. 47 (1995), 725- 743.
  • [319] G. Zboiński. Application of the three-dimensional triangularprism hpq adaptive finite element to plate and shell analysis. Computers & Structures, 65 (1997), 497-514.
  • [320] G. Zboiński, L. Demkowicz. Application of the 3D hpq Adaptive Finite Element for Plate and Shell Analysis. TICAM Report 94-13. The Texas Institute for Computational an Applied Mathematics. The University of Texas at Austin, Austin 1994.
  • [321] G. Zboiński, M. Moraczewski, M. Palacz, Z. Mieszczak. Adaptacyjna analiza elementów maszyn wirnikowych. Szacowanie błędów, procedury adaptacyjne i program komputerowy. Nr arch. 648/00. Instytut Maszyn Przepływowych PAN, Gdańsk 2000.
  • [322] G. Zboiński, W. Ostachowicz. An Adaptive 3D-Based Solid-to-Shell Transition hpq/hp Finite Element. No. 77/97. Institute of Fluid Flow Machinery. Polish Academy of Sciences, Gdańsk 1995.
  • [323] G. Zboiński, W. Ostachowicz. Adaptive adaptive hierarchical modelling and FE method for analysis of complex structures. [W:] Book of abstracts II. 4th EUROMECH Solid Mechanics Conference. Metz (France) 2000, 304.
  • [324] G. Zboiński, W. Ostachowicz. A family of 3D-based, compatible shell, transition and solid elements for adaptive hierarchical modelling and FE analysis of complex structures. [W:] CD-Rom Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering (ECCO¬MAS 2000). Barcelona 2000, 1-20.
  • [325] G. Zboiński, W. Ostachowicz. A unified approach to adaptive modeling and analysis of complex structures. [W:] Abstract book of 20th Internatinal Congress of Theoretical and Applied Mechanics (ICTAM 2000). Chicago 2000, 59.
  • [326] G. Zboiński, W. Ostachowicz. Algorytm uogólnionego, opartego na podejściu trójwymiarowym, adaptacyjnego elementu przejściowego typu hpq/hp. Nr arch. 131/99. Instytut Maszyn Przepływowych PAN, Gdańsk 1999.
  • [327] G. Zboiński, W. Ostachowicz. Badania nad lockingiem, niewłaściwą, granicą rozwiązania oraz zbieżnością metody hpq w analizie płyt za pomocą pryzmatycznego elementu skończonego. Nr arch. 84/98. Instytut Maszyn Przepływowych PAN, Gdańsk 1998.
  • [328] G. Zboiński, W. Ostachowicz. An algorithm of a family of 3D-based solid-to-shell transition, hpg/hp-adaptive finite elements. J. Theoret. Appl. Mech., 38 (2000), 791-806.
  • [329] G. Zboiński, W. Ostachowicz. Procedury adaptacyjne kompatybilnych aproksymacji typu hpq, hp i hpq/hp do analizy struktur złożonych. Nr arch. 40/2000. Instytut Maszyn Przepływowych PAN, Gdańsk 1999.
  • [330] G. Zboiński, W. Ostachowicz, M. Krawczuk. Szacowanie błędów aproksymacji i modelowania rodziny adaptacyjnych elementów skończonych do analizy struktur złożonych. Nr arch. 447/99. Instytut Maszyn Przepływowych PAN, Gdańsk 1999.
  • [331] G. Zboiński, W. Ostachowicz, M. Krawczuk. Modyfikacje procedur adaptacyjnych do analizy struktur złożonych w przypadku niewłaściwej granicy rozwiązania, lockingu i warstwy brzegowej. Nr arch. 204/2000. Instytut Maszyn Przepływowych PAN, Gdańsk 2000.
  • [332] G. Zboiński, W. Ostachowicz, M. Krawczuk, A. Żak. Program komputerowy do hierarchicznego modelowania i adaptacyjnej analizy struktur złożonych. Nr arch. 234/00. Instytut Maszyn Przepływowych PAN, Gdańsk 2000.
  • [333] G. Zboiński, W. Ostachowicz, M. Krawczuk, A. Żak. Badania nad lockingiem, niewłaściwą, granicą rozwiązania oraz zbieżnością metody hpq w analizie powłok za pomocą pryzmatycznego elementu skończonego. Nr arch. 178/98. Instytut Maszyn Przepływowych PAN, Gdańsk 1998.
  • [334] G. Zboiński, W. Ostachowicz, M. Krawczuk, A. Żak. Badania numeryczne adaptacyjnego, pryzmatycznego, powłokowego elementu skończonego typu hpq. Nr arch. 249/98. Instytut Maszyn Przepływowych PAN, Gdańsk 1998.
  • [335] G. Zboiński, W. Ostachowicz, M. Krawczuk, A. Żak. Podstawy algorytmów adaptacyjnej zmiany rzędu aproksymacji, gęstości sieci i modelu do adaptacyjnej analizy struktur złożonych. Nr arch. 264/99. Instytut Maszyn Przepływowych PAN, Gdańsk 1999.
  • [336] Z. Zhang. A note on the hybrid-mixed C° curved beam elements. Comput. Methods Appl. Mech. Engrg, 95 (1992), 243-252.
  • [337] Z. Zhang. Arch beam models: Finite element analysis and superconvergence. Numer. Math,., 61 (1992), 117-143.
  • [338] C. Zheng, F. Hammadi, J. L. Batoz. Formulation and evaluation of a new family of discrete Kirchhoff plate/shell elements. [W:] Book of abstracts I. 4th EUROMECH Solid Mechanics Conference. Metz (France) 2000, 54.
  • [339] X. Zhongnian. A thich-thin triangular plate element. Int. J. Numer. Meth-ods Engrg, 33, 963-973.
  • [340] J. Z. Zhu, Z. Zhang. The relationship of some a posteriori error estimation. [W:] Advances in Adaptive Computational Methods in Mechanics. Red. red. P. Ladeveze, J. T. Oden. Elsevier, Amsterdam 1998, 25-42.
  • [341] O. C. Zienkiewicz. Metoda elementów skończonych. Arkady, Warszawa 1972.
  • [342] O. C. Zienkiewicz, B. Boroomand. An improved REP recovery and the effectivity robustness test. Int. J. Numer. Methods Engrg, 40 (1997), 3247- 3277.
  • [343] O. C. Zienkiewicz, B. Boroomand. Recovery by equilibrium in patches (REP). Int. J. Numer. Methods Engrg, 40 (1997), 137-154.
  • [344] O. C. Zienkiewicz, E. Hinton. Reduced integration, function smoothing and non-conformity in the finite element analysis. J. Franklin Institute, 302 (1976), 443-461.
  • [345] O. C. Zienkiewicz, J. P. de S. R. Gago, D. W. Kelly. The hierarchic concept in finite element analysis. Computer & Structures, 16 (1983), 53-65.
  • [346] O. C. Zienkiewicz, D. W. Kelly, J. Gago, I. Babuśka. Hierarchical finite element approaches, error estimates and adaptive refinement. [W:] Mathematics of Finite Elements and Applications (IV). Academic Press, 1982, 313-346.
  • [347] O. C. Zienkiewicz, D. Lefebvre. A robust triangular plate bending element of the Reissner-Mindlin type. Int. J. Numer. Methods Engrg, 26 (1988), 1169-1184.
  • [348] O. C. Zienkiewicz, R. L. Taylor. The Finite Element Method. T. 1. The Basis. Butterworth-Heinemann, Oxford 2000.
  • [349] O. C. Zienkiewicz, R. L. Taylor. The Finite Element Method. T. 2. Solid Mechanics. Butterworth-Heinemann, Oxford 2000.
  • [350] O. C. Zienkiewicz, R. L. Taylor. The Finite Element Method. T. 2. Solid and Fluid Mechanics. Dynamics and Non-Linearity. McGraw-Hill, London 1991.
  • [351] O. C. Zienkiewicz, R. L. Taylor, S. Nakazawa. The patch test for mixed formulations. Int. J. Numer. Methods Engrg, 23 (1986), 1873-1883.
  • [352] O. C. Zienkiewicz, R. L. Taylor, P. Papdopoulos, E. Ohate. Plate bending elements with descrete constraints: new triangular elements. Computers & Structures, 35 (1990), 505-522.
  • [353] O. C. Zienkiewicz, J. Too, R. L. Taylor. Reduced integration technique in general analysis of plates and shells. Int. J. Numer. Methods Engrg, 3 (1971), 275-290.
  • [354] O. C. Zienkiewicz, Z. Xu, L. F. Zeng, A. Samuelsson, N. E. Wiberg. Linked interpolation for Reissner-Mindlin plate elements: Part I - A simple quadrilateral. Int. J. Numer. Methods Engrg, 24 (1993), 3043-3056.
  • [355] O. C. Zienkiewicz, J. Z. Zhu. A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Engrg, 24 (1987), 337-357.
  • [356] O. C. Zienkiewicz, J. Z. Zhu. Error estimates and adaptive refinement for plate bending problems. Int. J. Numer. Methods Engrg, 28 (1989), 2839- 2853.
  • [357] O. C. Zienkiewicz, J. Z. Zhu. The superconvergent patch recovery and a posteriori error estimates. Part 1. The recovery technique. Int. J. Numer. Methods Engrg, 33 (1992), 1331-1364.
  • [358] O. C. Zienkiewicz, J. Z. Zhu. The superconvergent patch recovery and a posteriori error estimates. Part 2. Error estimates and adaptivity. Int. J. Numer. Methods Engrg, 33 (1992), 1365-1382.
  • [359] G. W. Zumbush. Symmetric Hierarchical Polynomials for the h-p-Version of Finite Elements. Preprint SC 93-32. Konrad-Zuse-Zentrum fur Informa- tionstechnik, Berlin 1993.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cee7b8a9-b3fb-4692-afb9-c1af8dccaf70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.