PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Statistically convergent difference sequences of bi-complex numbers

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article we introduce the notion of statistical convergence difference sequences of bi-complex numbers. Some properties of these sequence spaces like BC-module, Banach BC-module, BC-balanced set, BC-convex set, solidness, and symetricity are studied.
Wydawca
Rocznik
Strony
363--369
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
  • Department of Mathematics, Tripura University, Agartala-799022, Tripura, India
  • Department of Mathematics, Tripura University, Agartala-799022, Tripura, India
Bibliografia
  • [1] S. Bera and B. C. Tripathy, Statistical bounded sequences of bi-complex numbers, Probl. Anal. Issues Anal. 12(30) (2023), no. 2, 3-16.
  • [2] S. Bera and B. C. Tripathy, Statistical convergence in a bicomplex valued metric space, Ural Math. J. 9 (2023), no. 1, 49-63.
  • [3] R. C. Buck, Generalized asymptotic density, Amer. J. Math. 75 (1953), 335-346.
  • [4] J. Cockle, A new imaginary in algebra, Lond. Edinb. Philos. Mag. 33 (1848), no. 3, 345-349.
  • [5] B. Das and B. C. Tripathy, On λ2-statistical convergence of complex uncertain sequences, Asian-Eur. J. Math. 16 (2023), no. 5, Article ID 2350083.
  • [6] B. Das, P. Debnath and B. C. Tripathy, On statistically convergent complex uncertain sequences, Carpathian Math. Publ. 14 (2022), no. 1, 135-146.
  • [7] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
  • [8] J. A. Fridy, On statistical convergence, Analysis 5 (1985), no. 4, 301-313.
  • [9] J. A. Fridy and C. Orhan, Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125 (1997), no. 12, 3625-3631.
  • [10] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24 (1981), no. 2, 169-176.
  • [11] G. B. Price, An Introduction to Multicomplex Spaces and Functions, Monogr. Textb. Pure Appl. Math. 140, Marcel Dekker, New York, 1991.
  • [12] D. Rochon and M. Shapiro, On algebraic properties of bicomplex and hyperbolic numbers, An. Univ. Oradea Fasc. Mat. 11 (2004), 71-110.
  • [13] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), no. 2, 139-150.
  • [14] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361-375.
  • [15] C. Segre, Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici, Math. Ann. 40 (1892), no. 3, 413-467.
  • [16] B. C. Tripathy, On statistically convergent and statistically bounded sequences, Bull. Malaysian Math. Soc. (2) 20 (1997), no. 1, 31-33.
  • [17] B. C. Tripathy and P. K. Nath, Statistical convergence of complex uncertain sequences, New Math. Nat. Comput. 13 (2017), no. 3, 359-374.
  • [18] B. C. Tripathy and M. Sen, On generalized statistically convergent sequences, Indian J. Pure Appl. Math. 32 (2001), no. 11, 1689-1694.
  • [19] A. Zygmund, Trigonometric Series: Vol. II, Cambridge University, New York, 1993.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cee40511-28b9-44bc-ad80-44683d79a201
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.