Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the present paper was to verify the hypothesis that a single application of specific dose of ash from biomass combustion and/or gypsum has a positive effect on physical properties of sandy soil and that the said effect disappears over the following years. The following were determined in the layer of 5-10 cm: penetration resistance (PR), vane shear resistance (Ss), gravimetric moisture content (ww), dry bulk density (BD), moisture content (WpF2) and air-filed porosity (PApF2) at water potential pF2. At pF2, susceptibility to soil compaction was analysed i.e., unit stress required to cause soil deformation of an assumed value of 1.0 mm (P1) or 2.0 mm (P2). Fertilisation with ash and/or gypsum at doses of 15 and 3 Mg∙ha-1 respectively, affects the physical properties of soil particularly in the first year following the application and that the said fertilisation is to be conducted every two years. It was found that fertilisation with ash has a particularly positive effect on ww. The loosening effect of fertilisation with ash, measured with BD, was poorly pronounced. A decrease in PR and Ss values was observed particularly in the first year. The analyses at water potential pF2 showed that fertilisation with ash or ash with the addition of gypsum has a positive effect on the properties under analysis. The effect of fertilisation with gypsum at a dose of 3 Mg∙ha-1 on the analysed properties was inconclusive.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
194--202
Opis fizyczny
Bibliogr. 53 poz., rys., tab., wykr.
Twórcy
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Environmental Management and Agriculture, Juliusza Słowackiego St 17, 71-434 Szczecin, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Environmental Management and Agriculture, Juliusza Słowackiego St 17, 71-434 Szczecin, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Environmental Management and Agriculture, Juliusza Słowackiego St 17, 71-434 Szczecin, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Environmental Management and Agriculture, Juliusza Słowackiego St 17, 71-434 Szczecin, Poland
autor
- Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka St 36, 20-618 Lublin, Poland
autor
- Agro Trade Sp. z o.o., Bohaterów Warszawy St 35A, 75-211 Koszalin, Poland
Bibliografia
- Akker van den, J.J.H., Arvidsson, J. and Horn, R. (2003) “Introduction to the special issue on experiences with the impact and prevention of subsoil compaction in the European Union,” Soil & Tillage Research, 73(1–2), pp. 1–8. Available at: https://doi.org/10.1016/S0167-1987(03)00094-1.
- Alakukku, L. (1996) “Persistence of soil compaction due to high axle load traffic. II. Long-term effects on the properties of fine-textured and organic soils,” Soil & Tillage Research, 37(4), pp. 223–238. Available at: https://doi.org/10.1016/0167-1987(96)01017-3.
- Arshad, M.A. et al. (2012) “Soil and crop response to wood ash and lime application in acidic soils,” Agronomy Journal, 104(3), pp. 715–721. Available at: https://doi.org/10.2134/agronj2011.0355.
- Arvidsson, J. (2001) “Subsoil compaction caused by heavy sugar-beet harvesters in southern Sweden I. Soil physical properties and crop yield in six field experiments,” Soil & Tillage Research, 60(1–2), pp. 67–78. Available at: https://doi.org/10.1016/S0167-1987(01)00169-6.
- Arvidsson, J. and Keller, T. (2011) “Comparing penetrometer and shear vane measurements with measured and predicted mouldboard plough draught in a range of Swedish soils,” Soil & Tillage Research, 111(2), pp. 219–223. Available at: https://doi.org/10.1016/j.still.2010.10.005.
- Assouline, S. (2006) “Modelling the relationship between soil bulk density and the water retention curve,” Vadose Zone Journal, 5(2), pp. 554–563. Available at: https://doi.org/10.2136/vzj2005.0083.
- Bang-Andreasen, T. et al. (2017) “Wood ash induced pH changes strongly affect soil bacterial numbers and community composition,” Frontiers in Microbiology, 8, 1400. Available at: https://doi.org/10.3389/fmicb.2017.01400.
- 8. Bang-Andreasen, T. et al. (2021) “Application of wood ash leads to strong vertical gradients in soil pH changing prokaryotic community structure in forest top soil,” Scientific Report, 11, 742. Available at: https://doi.org/10.1038/s41598-020-80732-0.
- Bhattacharya, S.S. and Chattopadhyay, G.N. (2002) “Increasing bioavailability of phosphorus from fly ash through vermicom-posting,” Journal of Environmental Quality, 31(6), pp. 2116–2119. Available at: https://doi.org/10.2134/jeq2002.2116.
- Bicki, T.J. and Siemens, J.C. (1991) “Crop response to wheel traffic soil compaction,” Transactions of the ASAE, 34, pp. 909–913. Available at: https://doi.org/10.13031/2013.31748.
- Błażejczak, D. and Dawidowski, J.B. (2016) “The impact of the plate diameter on the determined value of the pre-compaction stress of samples made of silt soil,” Agricultural Engineering, 20(2), pp. 5–14. Available at: https://doi.org/10.1515/agriceng-2016-0021.
- Bonfim-Silva, E.M. et al. (2022) “Wood ash as a vegetative-growth promoter in soils with subsurface compaction,” Revista Brasileira de Engenharia Agrícola e Ambiental, 26(4), pp. 258–265. Available at: https://doi.org/10.1590/1807-1929/agriambi.v26n4p258-265.
- Bowyer, C. et al. (2009) Land degradation and desertification. IP/A/ENVI/ST/2008-23, PE 416.203. Brussels: European Parliament’s Committee on the Environment, Public Health and Food Safety. Available at: https://www.europarl.europa.eu/RegData/etudes/etudes/join/2009/416203/IPOL-ENVI_ET(2009)416203_EN.pdf (Accessed: 03.12.2024).
- Brunner, I. et al. (2004) “Wood-ash recycling affects forest soil and tree fine-root chemistry and reverses soil acidification,” Plant and Soil, 267, pp. 61–71. Available at: https://doi.org/10.1007/s11104-005-4291-z.
- Correa, J. et al. (2019) “Soil compaction and the architectural plasticity of root systems,” Journal of Experimental Botany, 70(21), pp. 6019–6034. Available at: https://doi.org/10.1093/jxb/erz383.
- Cruz-Paredes, C. et al. (2017) “Using community trait-distributions to assign microbial responses to pH changes and Cd in forest soils treated with wood ash,” Soil Biology and Biochemistry, 112, pp. 153–164. Available at: https://doi.org/10.1016/j.soilbio.2017.05.004.
- Czyż, E.A. et al. (2013) “Podatność gleb na zagęszczenie [Susceptibility of soils to compaction],” Studia i Raporty IUNG-PIB, 35(9), pp. 57–95.
- Demeyer, A., Voundi Nkana, J.C. and Verloo, M.G. (2001) “Characteristics of wood ash and influence on soil properties and nutrient uptake: An overview,” Bioresource Technology, 77(3), pp. 287–295. Available at: https://doi.org/10.1016/S0960-8524(00)00043-2.
- Dexter, A.R. and Czyż, E. (2000) “Soil physical quality and the effects of management,” in M.J. Wilson and B. Kordybach (eds.) Soil quality, sustainable agriculture and environmental security in Central and Eastern Europe. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 153–165. Available at: https://doi.org/10.1007/978-94-011-4181-9_12.
- Dexter, A.R. and Czyż, E.A. (2007) “Applications of S-theory in the study of soil physical degradation and its consequences,” Land Degradation & Development, 18(4), pp. 369–381. Available at: https://doi.org/10.1002/ldr.779.
- Dexter, A.R., Czyż, E.A. and Gate, O.P. (2007) “A method for prediction of soil penetration resistance,” Soil & Tillage Research, 93, pp. 412–419. Available at: https://doi.org/10.1016/j.still.2006.05.011.
- Dexter, A.R. et al. (2001) “Water retention and hydraulic conductivity of a loamy sand soil as influenced by crop rotation and fertilization,” Archives of Agronomy and Soil Science, 46, pp. 123–133. Available at: https://doi.org/10.1080/03650340109366165.
- Eriksson, H.M. (1998) “Short-term effects of granulated wood ash on forest soil chemistry in SW and NE Sweden,” Scandinavian Journal of Forest Research, 2, pp. 43–45.
- Fleige, H. and Horn, R. (2000) “Field experiments on the effect of soil compaction on soil properties, runoff, interflow and erosion,” in R. Horn, J.J.H. van den Akker, J. Arvidsson (eds.) Subsoil compaction: distribution, processes and consequences. Advances in GeoEcology, 32. Reiskirchen, Germany: Catena Verlag, pp. 258–268.
- Gajda, A.M., Czyż, E.A. and Dexter, A.R. (2016) “Effects of long-term use of different farming systems on some physical, chemical and microbiological parameters of soil quality,” International Agrophysics, 30, pp. 165–172. Available at: https://doi.org/10.1515/intag-2015-0081.
- Gliński, J. and Lipiec, J. (2018) Soil physical conditions and plant roots. Boca Raton, FL, USA: CRC Press.
- Gysi, M. (2001) “Compaction of a Eutric Cambisol under heavy wheel traffic in Switzerland: Field data and a critical state soil mechanics model approach,” Soil & Tillage Research, 61, pp. 133–142. Available at: https://doi.org/10.1016/S0167-1987(01)00161-1.
- Hadas, A. et al. (1990) “Forage wheat yields as affected by compaction and convention vs. wide frame tractor traffic patterns,” Transactions of the ASAE, 33(1), pp. 79–85. Available at: https://doi.org/10.13031/2013.31297.
- Håkansson, I., Ouwerkerk van, C. and Soane, B.D. (1995) “Conclusions of ISTRO workshop on “The effects of soil compaction on physical, chemical and biological factors in the environment”. 25 August 1993, Metropol, Ukraine,” Soil & Tillage Research, 35, pp. 111–113.
- Hamza, M.A. and Anderson, W.K. (2005) “Soil compaction in cropping systems: A review of the nature, causes and possible solutions,” Soil & Tillage Research, 82, pp. 121–145. Available at: https://doi.org/10.1016/j.still.2004.08.009.
- Huotari, N. et al. (2015) “Recycling of ash – for the good of the environment?,” Forest Ecology and Management, 348, pp. 226–240. Available at: https://doi.org/10.1016/j.foreco.2015.03.008.
- Iderawumi, M.A. (2020) “Effects of ash on soil properties and yield of crops,” Agriculture Observer, 1(3), 8, pp. 61–66.
- Keller, T. et al. (2004) “Soil precompression stress II: A comparison of different compaction tests and stress-displacement behaviour of the soil during wheeling,” Soil & Tillage Research, 77(1), pp. 97–108. Available at: https://doi.org/10.1016/j.still.2003.11.003.
- Keller, T. et al. (2019) “Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning,” Soil & Tillage Research, 194, 104293. Available at: https://doi.org/10.1016/j.still.2019.104293.
- Knapp, B.A. and Insam, H. (eds.) (2011) “Recycling of biomass ashes: Current technologies and future research needs,” in H. Insam, B.A. Knapp (eds.) Recycling of biomass ashes. Berlin/Heidelberg, Germany: Springer Science & Business, pp. 1–16.
- Komornicki, T. and Zasoński, S. (1965) “Powtarzalność wyników oznaczeń niektórych właściwości fizycznych gleb (On the reproducibility of results in determinations of some physical soil properties),” Roczniki Gleboznawcze, 15(2) pp. 315–330.
- Kulli, B., Gysi, M. and Flühler, H. (2003) “Visualizing soil compaction based on flow pattern analysis,” Soil & Tillage Research, 70(1), pp. 29–40. Available at: https://doi.org/10.1016/S0167-1987(02)00121-6.
- Kuttah, D. and Sato, K. (2015) “Review on the effect of gypsum content on soil behavior,” Transportation Geotechnics, 4, pp. 28–37. Available at: https://doi.org/10.1016/j.trgeo.2015.06.003.
- Łabętowicz, J. et al. (2004) “Ocena wpływu wapnowania oraz gipsowania na zawartość glinu wymiennego w glebie lekkiej (Estimation of liming and gypsum application on the content of exchangeable aluminium in sandy soil),” Annales UMCS, Sec. E, 59(2), pp. 631–637.
- Mosaddeghi, M.R. et al. (2003) “Pre-compression stress and its relation with the physical and mechanical properties of a structurally unstable soil in central Iran,” Soil & Tillage Research, 70, pp. 53–64. Available at: https://doi.org/10.1016/S0167-1987(02)00120-4.
- Motavalli, P.P. et al. (2003) “Use of soil cone penetrometers to detect the effects of compaction and organic amendments in claypan soils,” Soil & Tillage Research, 74, pp. 103–114. Available at: https://doi.org/10.1016/S0167-1987(03)00150-8.
- Oskoui, K.E. and Voorheers, W.B. (1991) “Economical consequences of soil compaction,” Transactions of the ASAE, 34(6), pp. 2317–2323.
- Pagliai, M. et al. (2003) “Changes in some physical properties of a clay soil in Central Italy following the passage of rubber tracked and wheeled tractors of medium power,” Soil & Tillage Research, 73, pp. 67–76. Available at: https://doi.org/10.1016/S0167-1987(03)00105-3.
- PN-ISO-10390:1997. Jakość gleby. Oznaczenie pH [Soil quality. Determination of pH]. Warszawa: Polski Komitet Normalizacyjny.
- Rocha de Moraes Rego, C. et al. (2017) “Influence of gypsum on the physical properties of agricultural soil,” Asian Academic Research Journal of Multidisciplinary, 4(12), pp. 133–146. Available at: https://www.researchgate.net/publication/325811971 (Accessed: June 10, 2023).
- Romdhane, L. et al. (2021) “Effects of soil amendment with wood ash on transpiration, growth, and metal uptake in two contrasting maize (Zea mays L.) hybrids to drought tolerance,” Frontiers on Plant Science, 12. Available at: https://doi.org/10.3389/fpls.2021.661909.
- Schjønning, P. et al. (2015) “Driver-Pressure-State-Impact-Response (DPSIR) analysis and risk assessment for soil compaction – A European perspective,” Advances in Agronomy, 133, pp. 183–237. Available at: http://dx.doi.org/10.1016/bs.agron.2015.06.001.
- Soane, B.D. and Ouwerkerk van, C. (1994) Soil compaction in crop production. Amsterdam: Elsevier.
- Stanek-Tarkowska, J. et al. (2022) “The impact of using different doses of biomass ash on some physical properties of podzolic soil under the cultivation of winter oilseed rape,” International Journal of Environmental Research and Public Health, 19(11), 6693. Available at: https://doi.org/10.3390/ijerph19116693.
- Śnieg, M. (2012) Metoda wyznaczania naprężenia granicznego gleby w celu zapobiegania jej nadmiernemu zagęszczaniu machanizma-mi jezdnymi pojazdów rolniczych [The method of determining the pre-compaction stress of soil to prevent its excessive wheel compaction by agricultural machines]. Szczecin: Wyd. Uczelniane ZUT w Szczecinie.
- TIBCO Software Inc. (2017) Statistica (Data Analysis Software System) ver. 13. [Computer program]. Available at: https://docs.tibco.com/products/tibco-statistica-document-management-system-13-3-1 (Accessed: June 10, 2023).
- Tosti, L. et al. (2019) “Assessment of biomass ash applications in soil and cement mortars,” Chemosphere, 223, pp. 425–437. Available at: https://doi.org/10.1016/j.chemosphere.2019.02.045.
- Uliasz-Bocheńczyk, A., Pawluk, A. and Pyzalski, M. (2016) “Charakterystyka popiołów ze spalania biomasy w kotłach fluidalnych [Characteristics of ash from the combustion of biomass in fluidized bed boilers],” Gospodarka Surowcami Mineralnymi, 32(3), pp. 149–162. Available at: https://doi.org/10.1515/gospo-2016-0029.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cee09e80-b7de-43e0-adfb-182a3e775105
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.