PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Effect of grain size on the physicomechanical properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, locally available waste coconut (Cocos nucifera) shells (CSs) were investigated as possible replacement for asbestos-based brake pads. The CS-based brake pad was tested for its physicomechanical properties and compared with a commercial brake pad used as control sample. The results showed that (a) an improved interfacial bonding between the CS particles and the binder as the grain size decreases; (b) the 90 μm grain size sample had better physicomechanical properties than the control sample in all tests except the thermal conductivity and stability tests; and (c) the hardness, compressive strength, and density of the CS-based brake pad decreased with increasing grain size, whereas the absorption properties increased with increasing grain size. The study showed that further reduction of the grain size below 90 μm and matrix impregnation with metals of good thermal conductivity could provide significant improvements to properties of the CS-based brake pad.
Rocznik
Strony
135--144
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
  • Applied Mechanics & Design Group, Department of Mechanical Engineering, Faculty of Engineering, University of Port Harcourt, Port Harcourt, Nigeria
autor
  • Applied Mechanics & Design Group, Department of Mechanical Engineering, Faculty of Engineering, University of Port Harcourt, Port Harcourt, Nigeria
  • Applied Mechanics & Design Group, Department of Mechanical Engineering, Faculty of Engineering, University of Port Harcourt, Port Harcourt, Nigeria
Bibliografia
  • 1. J.P. Blau: Compositions, functions and testing of friction brake materials and their additives. A report by Oak Ridge National Laboratory for U.S. Dept. of Energy 2001, 78–80. Retrieved from: http://www.Ornl.-gov/webworks/cppr/y2001/rpt/112956.pdf [February 2015].
  • 2. N.P. Ndoke: Performance of palm kernel shells as a partial replacement for coarse aggregate in asphalt concrete. Leonardo Electron. J. Pract. Technol., 9(2006), 145-152.
  • 3. K.K. Ikpambese, D.T. Gundu, L.T. Tuleun: Evaluation of palm kernel fibers (PKFs) for production of asbestos–free automotive brake pads. J. King Saud Univ. Eng. Sci., 28(2014), 110-118.
  • 4. C.M. Ruzaidi, et al.: Morphology and wear properties of palm ash and PCB waste brake pad. Int. Conf. Asia Agriculture and Animal IPCBEE vol. 1 (2011). IACSIT Press, Singapore.
  • 5. I. Mutlu: Investigation of tribological properties of brake pads by using rice straw and rice husk dust. J. Appl. Sci., 9(2009), 377-381.
  • 6. S.K. Acharya, S.P. Samantrai: The friction and wear behaviour of modified rice husk filled epoxy composite. ACUN6 – Composites and Nanocomposites in Civil, Offshore and Mining Infrastructure, Melbourne 14 – 16 November, 2012.
  • 7. G.M. Babatunde: Availability of banana and plantain products for animal feeding. Proceedings of the FAO Expert Consultation held in CIAT, Cali, Colombia: FAO Animal Production and Health Roma (1992), Paper 95.
  • 8. U.D. Idris, V.S. Aigbodiun, I.J. Abubakar, C.I. Nwoye: Eco–friendly asbestos free brake–pad: using banana peel. Journal of King Saud University - Engineering Sciences, 27 (2015), 185–192.
  • 9. N.A. Ademoh, A.I. Olabisi: Development and evaluation of maize husks (asbestos-free) based brake pad. Ind. Eng. Lett., 5(2015), 67-80.
  • 10. D.S. Yawas, S.Y. Aku, S.G. Amaren: Morphology and properties of periwinkle shell asbestos-free brakepad. Journal of King Saud University - Engineering Sciences, 28 (2016), 103-109.
  • 11. V.S. Aigbodion, et al.: Development of asbestos–free brake pad using bagasse. Tribology in Industry, 32 (2010), 12-18.
  • 12. I.O. Oladele, T.A. Adewole: Influence of cow bone particle size distribution on the mechanical properties of cow-bone-reinforced polyester composites. Biotechnol. Res. Int. J., (2013) Article ID 725396, 5 pages.
  • 13. M. Afolabi, et al.: Experimental investigation of palm kernel shell and Cow bone reinforced polymer composites for brake pad production. Int. J. Chem. Mater. Res., 3(2015), 27-40.
  • 14. N. Natarajan, et al.: Dry sliding wear and mechanical behavior of Aluminium/Fly ash/graphite hybrid metal matrix composite using Taguchi method. Int. J. Mod. Eng. Res., 2(2012), 1224-1230.
  • 15. A.I. Olabisi, A.N. Adam, O.M. Okechukwu: Development and assessment of composite brakepad using pulverized cocoa beans shells filler. Int. J. Mater. Sci. Appl., 5(2016), 66-78.
  • 16. K. Ramanathan, et al.: Development of asbestos-free brake pads: using lemon peel powder. Int. J. Innovative Res. Sci., Eng. Technol., 6(2017), 4449-4455.
  • 17. Z.U. Elakhame, et al.: Production of asbestos free brake pad using periwinkle shell as filler material. Int. J. Sci. Eng. Res., 8(2017), 1728-1735.
  • 18. P.B. Madakson, D.S. Yawas, A. Apasi: Characterization of coconut shell ash or potential utilization in metal matrix composites for automobile applications. International Journal of Engineering Science and Technology, 4(2012), 1190-1198.
  • 19. M.A. Maleque, et al.: New natural fibre reinforced aluminium composite for automotive brake pad. Int. J. Mech. Mater. Eng., 7(2012), 166-170.
  • 20. C.D. Liyanage, M. Pieris: A physic-chemical analysis of coconut shell powder. Procedia Chem., 16(2015), 222-228.
  • 21. D.-A. Bashar, B.M. Peter, M. Joseph: Material selection and production of a cold worked composite brake pad. World J. Eng. Pure Appl. Sci., 2(2012), 96.
  • 22. D. Egeonu, P.N. Okole, C. Oluah: Production of eco-friendly brake pad using raw materials sourced locally in Nsukka. Int. J. Energy Technol. Policy, 5(2015), 47-54 .
  • 23. M.M. Daud, et al.: Effect of coconut shell powder in brake friction materials. 1st Colloquium Paper: Advanced Materials and Mechanical Engineering Research (CAMMER’18), (2018), 2pp.
  • 24. J. Abutu, et al.: Production and characterization of brake pad developed from coconut shell reinforcement material using central composite design. SN Appl. Sci., 1(2018), 82.
  • 25. R.S. Juan, et al.: Mechanical properties of brake pad composite made from candlenut shell and coconut shell. J. Phys. Conf. Ser., 11428(2020), 012018.
  • 26. R. Murthy, K. Chandrashekara, R. Ravishankar, S. Abhinandan: Evaluation of the Properties of eco-friendly brake pad using coconut shell powder as filler materials. International Journal of Research in Mechanical Engineering and Technology, 4 (2014), 198-106.
  • 27. R.O. Edokpia, et al.: Experimental study of the Properties of Brake pad using Egg shell particles-Gum Arabic composites, Journal of the Chinese Advanced Materials Society 4 (2015), 172-184.
  • 28. H. Cease, et al.: Measurement of mechanical properties of three epoxy adhesives at cryogenic temperatures for CCD construction: Fermi National Accelerator Laboratory. Batavia IL 60510. Chief Agri/Industrial Division (2013), Kearney, United States, NE 68848: Apparent Densities of Dry Feed Ingredients.
  • 29. SIMPSON STRONG-TIE COMPANY INC, FX-523 Flexibilized Epoxy Adhesive, Technical Data-Sheet and Safety Data Sheet (2014).
  • 30. N.A. Hooton: Metal-ceramic composites in high-energy friction applications. Bendix Tech. J., Spring (1969), 55–61.
  • 31. K. Deepika, et al.: Fabrication and performance evaluation of a composite material for wear resistance application. Int. J. Eng. Sci. Innovative Technol., 2(2013), 66-71.
  • 32. I.M. Dagwa, A.O.A. Ibhadode: Design and manufacture of automobile disk brake pad test rig. Niger. J. Eng. Res. Dev., 4(2005), 15-24.
  • 33. A.O.A. Ibhadode, I.M. Dagwa: Determination of optimum manufacturing conditions for asbestos-free brake pad using Taguchi method. Niger. J. Eng. Res. Dev., 5(2006), 1-8.
  • 34. B. Bhushan: Principles and applications of tribology (1st Edition). John Wiley & Sons Inc Publishers, New York, USA 1999.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cedff7eb-7841-421d-87f4-e6f2d20770a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.