PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effectiveness of Floating Treatment Wetlands with Cyperus papyrus Used in Sub-Humid Climate to Treat Urban Wastewater: A Case Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The wastewater from small communities and rural areas, usually discharged in an unsuitable manner, requires an appropriate treatment. The floating treatment wetland has revealed a great potential due to good performance, low cost and low maintenance means of improving water quality over a broad range of applications. The aim of this article was to present the results of the adaptation period (57 days) of a macrophyte plant “Cyperus papyrus” and its potential for treating wastewater generated by the campus of the National Office of Electricity and Drinking Water (ONEE) of Rabat. Two hydraulic retention times were applied: 2 and 4 days. Pilot experimental setups (two tanks) were installed: one tank where the macrophyte, being the subject of the study, was installed and the other served as a control. The macrophyte plants were suspended in floating mat, keeping the plant roots permanently in contact with the water and removing pollutants via several processes. During the adaptation of the plant which concerned four parameters: the evolution of the density, the height of the stems, the number of shoots as well as the state of health of the plants, a period of adaptation to the medium of implantation of fifty-seven days was observed. Along this adaptation phase, the results showed that: plant density increased from 9 to 29 units; the heights of the four identified stems of Cyperus papyrus increased from 15, 6, 11 and 8 cm to 73, 43, 30 and 24 cm, respectively; the appearance of 72 shoots and the plant has completed the adaptation phase in good health (absence of disease Symptoms). The treated water obtained from outlet and wastewaters were analyzed for various water quality parameters, such as Chemical Oxygen Demand (COD), Biological Oxygen Demand (BOD), and Suspended Solids (SS). The floating treatment wetlands system is able to remove 37.8% of COD; 47.6% of BOD5and 74.4% of SS for HRT of 2 days and 63.7% of COD; 78.4% of BOD5 and 89.1% of SS for HRT of 4 days. Moreover, it was found that the purification efficiency in terms of these three pollution parameters is all the more important as the hydraulic retention time is high.
Rocznik
Strony
157--168
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Laboratory of Process Engineering & Environment, Faculty of Sciences & Techniques, Hassan II University of Casablanca, BP 146 Mohammedia 28806, Morocco
  • Laboratory of Process Engineering & Environment, Faculty of Sciences & Techniques, Hassan II University of Casablanca, BP 146 Mohammedia 28806, Morocco
autor
  • Laboratory of Process Engineering & Environment, Faculty of Sciences & Techniques, Hassan II University of Casablanca, BP 146 Mohammedia 28806, Morocco
  • National Office of Electricity and Potable Water (ONEE), Avenue Belhassan El Ouazzani BP, Rabat Chellah 10002, Morocco
  • National Office of Electricity and Potable Water (ONEE), Avenue Belhassan El Ouazzani BP, Rabat Chellah 10002, Morocco
Bibliografia
  • 1. AFNOR. 1994. Qualité de l’eau, Environnement. Recueil des normes françaises, Paris.
  • 2. Afzal, M., Rehman, K., Shabir, G., Tahseen, R., Ijaz, A., Hashmat, A.J., Brix, H. 2019. Large-scale remediation of oil-contaminated water using floating treatment wetlands. Clean Water, 2(1), 3.
  • 3. Bi, R., Zhou, C., Jia, Y., Wang, S., Li, P., Reichwaldt, E.S., Liu, W. 2019. Giving waterbodies the treatment they need: A critical review of the application of constructed floating wetlands. Journal of Environmental Management, 238, 484–498.
  • 4. Bulletin Officiel n° 5448 du 17 août 2006. Arrêté conjoint du ministre de l’intérieur, du ministre de l’aménagement du territoire, de l’eau et de l’environnement et du ministre de l’industrie, du commerce et de la mise à niveau de l’économie n° 1607-06 du 29 joumada II 1427 portant fixation des valeurs limites spécifiques de rejet domestique.
  • 5. Chen, Z., Cuervo, D.P., Müller, J.A., Wiessner, A., Köser, H., Vymazal, J., Kuschk, P. 2016. Hydroponic root mats for wastewater treatment—a review. Environmental Science and Pollution Research, 23(16), 15911–15928.
  • 6. Colares, G.S., Dell’Osbel, N., Wiesel, P.G., Oliveira, G.A., Lemos, P.H.Z., da Silva, F.P., Lutterbeck, C.A., Kist, L.T., Machado, Ê.L. 2020. Floating treatment wetlands: A review and bibliometric analysis. Science of the Total Environment, 714, 13.
  • 7. El Hafidi M. 2021. Phyto-épuration des eaux usées domestiques sur un filtre vertical planté de Cyperus papyrus : optimisation des paramètres de conception et analyse des couts. Ph.D. Thesis, Mohammedia University, Morocco.
  • 8. El Hafidi M., Mouhir L., Laaouan M., Kabbour A., Saafadi L. 2020. Domestic wastewater treatment by vertical filter planted with Papyrus cyperus: the plant adaptation in the new environment. E3S Web of Conferences, 150, 4.
  • 9. Headley, T.R., Tanner, C.C. 2012.Constructed wetlands with floating emergent macro-phytes: an innovative stormwater treatment technology. Critical Reviews in Environmental Science and Technology, 42(21), 2261–2310.
  • 10. Ijaz, A., Shabir, G., Khan, Q.M., Afzal, M. 2015. Enhanced remediation of sewage effluent by endophyte-assisted floating treatment wetlands. Ecological Engineering, 84, 58–66.
  • 11. Lombard Latune R., Molle P. 2015. Quelles plantes pour les filtres plantés de végétaux dans les DOM?, Irstea, France.
  • 12. Nichols P., Lucke T., Drapper D., Walker C. 2016. Performance Evaluation of a Floating Treatment Wetland in an Urban Catchment. Water, 8, 244.
  • 13. Njenga M., Diederik P.L., Rousseau, J.A., Bruggen, V., Piet, N.L. Lens. 2015. Use of the Macrophyte Cyperus Papyrus in Wastewater Treatment. The Role of Natural and Constructed Wetlands in Nutrient Cycling and Retention on the Landscape, Czech.
  • 14. ONEP- GTZ (1998). Approche de la typologie des eaux usées urbaines au Maroc.
  • 15. Pavlineri, N., Skoulikidis, N.T., Tsihrintzis, V.A. 2017. Constructed floating wetlands: a review of research, design, operation and management aspects, and data meta-analysis. Chemical Engineering Journal, 308, 1120–1132.
  • 16. Tara, N., Arslan, M., Hussain, Z., Iqbal, M., Khan, Q.M., Afzal, M. 2019. On-site performance of floating treatment wetland macrocosms augmented with dye-degrading bacteria for the remediation of textile industry wastewater. Journal of Cleaner Production, 217, 541–548.
  • 17. Terer, T., Triest, L., Muthama Muasya, A. 2012. Effects of harvesting Cyperus papyrus inundisturbed wetland, Lake Naivasha, Kenya. Hydrobiologia, 680(1), 135–148.
  • 18. Wang, W.H., Wang, Y., Sun, L.Q., Zheng, Y.C., Zhao, J.C. 2020a. Research and application status of ecological floating bed in eutrophic landscape water restoration. Science of The Total Environment, 704, 135434.
  • 19. Wang, W.H., Wang, Y., Wei, H.S., Wang, L.P., Peng, J., 2020b. Stability and purification efficiency of composite ecological floating bed with suspended inorganic functional filler in afield study. Journal of Water Process Engineering, 37, 101482.
  • 20. www.Accuweather.com, données météorologiques de la ville de Rabat 2021.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ceda3fb8-ca0c-4d26-af4e-926ca7a794a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.