PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Navigation decision support for sea-going ships in port approach areas

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Port approaches are high-traffic areas with limited manoeuvring space. Navigation in such areas requires the analysis of large amounts of information, which can impede decision processes. One solution may be the development of decision support systems dedicated to these areas. This paper presents an attempt to build a navigation decision support system operable in the approach area leading to the port of Świnoujście (Poland), with ship domain implemented as a safety criterion. Assumptions for a decision support system to be used by sea-going vessels in port approach areas are formulated and discussed. Specific features of these areas, such as traffic density, bathymetry, available manoeuvring space and legal limitations are taken into account. The source and scope of information available to the ship have been analysed. The scope of decision support has been defined. A ship domain has been proposed as a safety criterion. Approach areas leading to the port of Świnoujście have been investigated on the basis of real Automatic Identification System (AIS) data. Vessel movement processes in the chosen area were analysed. Ship domains in various parts of the area were determined. The first results concerning criteria for navigational safety assessment are presented. The conducted studies showed significant differences in the size of domains. A case study was performed on a decision support system operable in the approach area leading to Świnoujście.
Rocznik
Strony
75--83
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Maritime University of Szczecin, Institute of Maritime Technologies, 1–2 Wały Chrobrego St., 70-500 Szczecin, Poland
autor
  • Maritime University of Szczecin, Institute of Maritime Technologies, 1–2 Wały Chrobrego St., 70-500 Szczecin, Poland
autor
  • Maritime University of Szczecin, Institute of Navigation, 1–2 Wały Chrobrego St., 70-500 Szczecin, Poland
Bibliografia
  • 1. ALRS (2015) Admiralty List of Radio Signals vol. 6(2) 2015/2016, Pilot Services, Vessel Traffic Services and Port Operations, UK Hydrographic Office, Taunton.
  • 2. Bertram, V. (2000) Practical ship hydrodynamics. Oxford: Butterworth-Heinemann, Linacre House, Jordan Hill.
  • 3. Blanke, M., Henriques, M. & Bang, J. (2017) A pre-analysis on autonomous ships [Online] Available from: https: //www.dma.dk/Documents/Publikationer/Autonome%20 skibe_DTU_rapport_UK.pdf [Accessed: October 25, 2017]
  • 4. Coldwell, T.G. (1983) Marine Traffic Behaviour in Restricted Waters. J. Navig. 36, pp. 430–444.
  • 5. Dinh, G.H. & Im, N-K. (2016) The combination of analytical and statistical method to define polygonal ship domain and reflect human experiences in estimating dangerous area. International Journal of e-Navigation and Maritime Economy 4, pp. 97–108.
  • 6. Fossen, T. (2011) Handbook of Marine Craft Hydrodynamics and Motion Control. First Edition, John Wiley & Sons Ltd.
  • 7. Fujii, Y. & Tanaka, K. (1971) Traffic Capacity. Journal of Navigation 24, Royal Institute of Navigation, Cambridge, pp. 543–552.
  • 8. Goodwin, E.M. (1975) A statistical study of ship domains. The Journal of Navigation 28, pp. 329–341.
  • 9. Gucma, L. & Gucma, M. (2010) Pilot Docking system – New tool for safe maritime operation. Logistyka 4.
  • 10. Gucma, S., Bąk, A., Jankowski, S. & Gucma, M. (2008) Pilot Navigation System – a new tool for handling vessels in ports and confined areas. Maintenance Problems 2(69), pp. 175–184.
  • 11. Hansen, M.G., Jensen, T.K., Lehn-Schiøler, T., Melchild, K., Rasmussen, F.M., Enne- Mark, F. (2013) Empirical Ship Domain based on AIS Data. Journal of Navigation 66(6).
  • 12. IMO MSC (2017) International Maritime Organization, Maritime Safety Committee. A pre-analysis on autonomous ships, MSC 98/INF.13.
  • 13. Lazarowska, A. (2015) Ship’s Trajectory Planning for Collision Avoidance at Sea Based on Ant Colony Optimisation. Journal of Navigation 68(02), pp. 291–307.
  • 14. Pietrzykowski, Z. (2008) Ship’s Fuzzy Domain – a Criterion for Navigational Safety in Narrow Fairways. Journal of Navigation 61, Royal Institute of Navigation, Cambridge, pp. 501–514.
  • 15. Pietrzykowski, Z. & Magaj, J. (2016) Ship Domains in Traffic Separation Schemes. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 45 (117), pp. 143–149.
  • 16. Pietrzykowski, Z., Wielgosz, M. & Siemianowicz, M. (2012) Ship domain in the restricted area – simulation research. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 32 (104), pp. 139–143.
  • 17. Pietrzykowski, Z., Wołejsza, P. & Borkowski, P. (2017) Decision Support in Collision Situations at Sea. Journal of Navigation 70, 3, Royal Institute of Navigation, Cambridge, pp. 447–464.
  • 18. SEAiq Pilot (2017) [Online] Available from: http://seaiq. com/features.html [Accessed: October 25. 2017]
  • 19. seaPro Pilot (2017) [Online] Available from: http://www.euronav.co.uk/products/Commercial/seaPro_Pilot/seaPro_Pilot.html [Accessed: October 25, 2017]
  • 20. Śmierzchalski, R., Kuczkowski, Ł., Kolendo, P. & Jaworski, B. (2013) Distributed Evolutionary Algorithm for Path Planning in Navigation Situation. TransNav – The International Journal on Marine Navigation and Safety of Sea Transportation 7, 2, pp. 293–300.
  • 21. Śmierzchalski, R. & Weintrit, A. (1999) Domains of navigational objects as an aid to route planing in collision situation at sea. In: Proc. of 3rd Navigational Symposium, Gdynia, I, 265, (in Polish).
  • 22. Szłapczyński, R. (2011) Evolutionary sets of safe ship trajectories: a new approach to collision avoidance. The Journal of Navigation 64, pp. 69–181.
  • 23. Thombre, S., Guinness, R., Kuusniemi, H., Pietrzykowski, Z., Banaś, P., Wołejsza, P., Seppälä, O., Laukkanen, J. & Ghawi, P. (2017) Proof-of-Concept Demonstrator to Improve Safety of Maritime Navigation in the Baltic Sea. European Navigation Conference 2017, Lausanne, IEEE, pp. 232–242.
  • 24. Thombre, S., Kuusniemi, H., Söderholm, S., Chen, L., Guinness, R., Pietrzykowski, Z. & Wołejsza, P. (2016) Operational Scenarios for Maritime Safety in the Baltic Sea. NAVIGATION, Journal of The Institute of Navigation 63, 4, pp. 519–529.
  • 25. Totem Plus (2014) Totem Decision Support Tool [Online] Available from: http://www.totemplus.com/DST.html [Accessed: August 31, 2017]
  • 26. Trelleborg (2017) SmartDock Laser Docking Aid System. [Onlline] Available from: http://www.trelleborg.com/en/ marine-systems/products--solutions--and--services/docking--and--mooring/docking--aid--system/smart--dock--laser [Accessed: October 25, 2017]
  • 27. Tsou, M.-Ch. & Hsueh, Ch.-K. (2010) The Study of Ship Collision Avoidance Route Planning by Ant Colony Algorithm. Journal of Marine Science and Technology 18, 5, pp. 746–756.
  • 28. Xiaoxia, W. & Chaohua, G. (2002) Electronic chart display and information system. Geo-spatial Information Science 5, 1, pp 7–11.
  • 29. Zhu, X., Xu, H. & Lin, J. (2001) Domain and its model based on neural networks. Journal of Navigation 54, 97.
Uwagi
PL
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ced3a6a9-fc21-4019-871a-3c37db4e07c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.