PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Carbon Content on the Microstructure and Properties of Ti-6Al-4V Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article shows the effect of the increased carbon content on the microstructure and properties of two-phase titanium alloy Ti-6Al-4V. Alloys with different carbon content (0.2 and 0.5 wt.%) were produced in vacuum induction furnace with cooper crucible. It was shown that the addition of carbon at the level of 0.2 wt.% increases hardness and strength properties, affects structural stability, results in grain refinement as well as improves creep and oxidation resistance. However, it has a negative effect on plastic deformation. Increasing the carbon content to the 0.5 wt.% causes the further improvement in the creep and oxidation resistance and microstructure refinement of the tested alloys, resulting also in decrease such properties as plasticity, hot deformability and in case of the susceptibility to cold plastic deformation to unacceptable level.
Twórcy
  • Silesian University of Technology, Faculty of Materials Engineering, Department of Advanced Materials and Technology, 8 Krasińskiego Str., 40-019 Katowice, Poland
  • Silesian University of Technology, Faculty of Materials Engineering, Department of Advanced Materials and Technology, 8 Krasińskiego Str., 40-019 Katowice, Poland
Bibliografia
  • [1] R. R. Boyer, JOM 62 (5), 21-24 (2010).
  • [2] P. G. Esteban, L. Bolzoni, E. M. Ruiz Navas, E. G. Oderiz, Patent WO2010015723A1, (2010).
  • [3] V. Venkatesh, A. L. Pilchak et al. (eds.), Proceedings of the 13th World Conference on Titanium: 2015, San Diego (USA), John Wiley & Sons, San Francisco (2016).
  • [4] C. Leyens, M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2003).
  • [5] F. H. Froes, Titanium: Physical Metallurgy, Processing, and Applications, ASM International, Materials Park 2015.
  • [6] X. Song, L Chen., K. Li, G. Chen, Int. J. Mod. Phys. B 23, 6-7, 814-820 (2009).
  • [7] Z. Q. Chen, Y. G. Li, M. H. Loretto, Mater. Sci. Tech. 19, 1391-1398 (2003).
  • [8] A. Szkliniarz, Solid State Phenom. 176, 149-156 (2011).
  • [9] Q. Wei, L. Wang, Y. Fu, J. Qin, W. Lu, D. Zhang, Mater. Des. 32, 2934-2939 (2011).
  • [10] J. Del Prado, X. Song, D. Hu, X. Wu, J. Mater. Eng. Perform. 14 (6), 728-734 (2005).
  • [11] A. Szkliniarz, Solid State Phenom. 226, 23-28 (2015).
  • [12] H. Ogden, R. Jaffee, Titanium Metallurgical Laboratory Report No. 20, Ohio (1955).
  • [13] C. Ouchi, H. Iizumi, S. Mitao, Mater. Sci. Eng. A 243, 186-195 (1998).
  • [14] A. Szkliniarz, Solid State Phenom. 212, 3-6 (2014).
  • [15] J. Lapin, A. Klimová, Vacuum 169, 108930 (2019).
  • [16] W. Szkliniarz, A. Szkliniarz, Mater. Sci. Tech. 35, 3, 297-305 (2019).
  • [17] A. Szkliniarz, Titanium alloys with carbon, Publishing House of Silesian University of Technology, Gliwice (2018) (in polish).
  • [18] M. J. Donachie, Titanium: A Technical Guide, 2nd Edition. ASM International, Materials Park (2000).
  • [19] G. Lütjering, J. C. Williams, Titanium. Springer Berlin Heidelberg New York (2007).
  • [20] F. H. Froes: Titanium: Physical Metallurgy, Processing, and Applications. ASM International, Materials Park (2015).
  • [21] D. Zhao, T. Ebel, M. Yan, M. Qian, JOM 67, 2236-2243 (2015).
  • [22] H. Kashii, A. Nakamura, N. Kitazaki, Y. Kitagawa, K. Koide, High strength and high ductility titanium alloy. United States Patent: 5, 759.484 (1998).
  • [23] X. Song, L. Chen, K. Li, G. Chen, Int. J. Mod. Phys. 23, 6-7, 814-820 (2009).
  • [24] http://cartech.ides.com/datasheet.aspx, accessed: 11.2019
  • [25] G. Welsch, R. Boyer, E. W. Collings, Materials Properties Handbook: Titanium Alloy ASM International (1993).
  • [26] http://www.timet.com, accessed: 11.2019
  • [27] E. A. Gee, J. B. Sutton, W. J. Barth, Industrial and engineering chemistry 42, 2, 243-249 (1950).
  • [28] E. Schwaighofer, B. Rashkova, H. Clemens, A. Stark, S. Mayer, Intermetallics 46, 173-184 (2014).
  • [29] A. Klimova et al., Mater. Sci. Eng. 179, 012038 (2017) DOI: 10.1088/1757-899X/179/1/012038
  • [30] F. S. Sun, E. J. Lavernia, J. Mater. Eng. Perform. 14, 784-787 (2005).
  • [31] W. Harrison, Z. Abdallah, M. Whittaker, Materials (Basel) 7 (3), 2194-2209 (2014), DOI: 10.3390/ma7032194
  • [32] C. H. Xu, W. Gao, Material Research Innovations 3, 231-235 (2000).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ced05e4b-72fa-43ab-8231-25adacb43e87
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.