PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Technical and economic study of the energy transition from natural gas to green hydrogen in thermal power plants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research article contributes to the challenge of global warming by presenting the approach of the use of green hydrogen to reduce greenhouse gases. It shows that CO2 emissions can be significantly reduced in thermal power plants by replacing natural gas with green hydrogen as a fuel. This work presents the techno-economic study of the energy transition of a 12 MW thermal power plant based on green hydrogen. The presented study is based on the energy consumption of Nigeria, 73% of which is covered by natural gas thermal power plants. The obtained results show that the cost of this transition is ca. 17 million dollars (USD) for a reduction of 114 tCO2 per plant with a return on investment between 4-5 years. In addition, through modeling and numerical simulation, this article shows that estimated return on investment can be shortened by using the thermal power resulting from the turbine, through industrial use.
Twórcy
  • Department of Electrical Engineering Laboratory of Complex Cyber-Physical Systems (LCCPS) of ENSAM, Hassan II University 150 Bd du Nil, Casablanca 20670, Morocco
  • epartment of Electrical Engineering Laboratory of Complex Cyber-Physical Systems (LCCPS) of ENSAM, Hassan II University 150 Bd du Nil, Casablanca 20670, Morocco
  • Department of Electrical Engineering Laboratory of Complex Cyber-Physical Systems (LCCPS) of ENSAM, Hassan II University 150 du Nil, Casablanca 20670, Morocco
  • Department of Electrical Engineering Laboratory of Complex Cyber-Physical Systems (LCCPS) of ENSAM, Hassan II University 150 Bd du Nil, Casablanca 20670, Morocco
  • Department of Electrical Engineering Laboratory of Complex Cyber-Physical Systems (LCCPS) of ENSAM, Hassan II University 150 Bd du Nil, Casablanca 20670, Morocco
Bibliografia
  • [1] S. Sharma, C. -, Global warming and Climate change, Int. J. Glob. Sci. Res. 6 (2019). https://doi.org/10.26540/ijgsr.v6.i2.2019.140.
  • [2] J.A. Church, N.J. White, Sea-Level Rise from the Late 19th to the Early 21st Century, Surv. Geophys. 32 (2011) 585–602. https://doi.org/10.1007/s10712-011-9119-1.
  • [3] R. Lindsey, Climate Change: Global Sea Level | NOAA Climate.gov, Climate.Gov. (2021) 1–8. https://www.climate.gov/news-features/understanding-climate/climate-change-global-sea-level.
  • [4] Ministere de La Transition Ecologioque, Electricite. Chiffres cles de l’energie, (2022).
  • [5] Emissions of gases causing the greenhouse effect by thermoelectric power plant in the 2000-2020 period, Econ. Energy. 23 (2000).
  • [6] J. Goldmeer, J. Catillaz, Hydrogen for power generation, 2022. www.ge.com/power/future-of-energy.
  • [7] B. Deboyser, La toute première batterie domestique à hydrogène : quel est son intérêt ?, (2021). https://www.revolution-energetique.com/la-toute-premiere-batterie-domestique-a-hydrogene-quel-est-son-interet/.
  • [8] L.P. Moulebe, A. Touati, E.A. Obar, N. Rabbah, SIMULATION AND DESIGN OF AN ENERGY ACCUMULATOR AROUND THE HYDROGEN ENERGY VECTOR, Acta Innov. 2023 (2023) 65–78. https://doi.org/10.32933/ActaInnovations.46.5.
  • [9] D. Parra, M. Gillott, G.S. Walker, Design, testing and evaluation of a community hydrogen storage system for end user applications, Int. J. Hydrogen Energy. 41 (2016) 5215–5229. https://doi.org/10.1016/j.ijhydene.2016.01.098.
  • [10] UN, Nigeria Population, World Popul. Rev. (2020) 1. https://worldpopulationreview.com/countries/nigeria-population.
  • [11] O. Nnodim, 40 % Nigerian households use generators, spend on fuel, Niger. Households Use Gener. (2022) 1–7. https://punchng.com/40-nigerian-households-use-generators-spend-14bn-on-fuel-report/.
  • [12] G. Glenk, S. Reichelstein, Reversible Power-to-Gas systems for energy conversion and storage, Nat. Commun. 13 (2022) 1–10. https://doi.org/10.1038/s41467-022-29520-0.
  • [13] Energypedia, Nigeria Electricity Sector - energypedia, (2022). https://energypedia.info/wiki/Nigeria_Electricity_Sector.
  • [14] N. Edomah, C. Foulds, A. Jones, Energy transitions in Nigeria: The evolution of energy infrastructure provision (1800-2015), Energies. 9 (2016) 484. https://doi.org/10.3390/en9070484.
  • [15] M. Steen, Greenhouse Gas Emissions from Fossil Fuel Fired Power Generation Systems. EUR 19754 EN, Joint research centre., 2000.
  • [16] A. Poupard, M. Fetet, S. Postic, Les comptes mondiaux du carbone en 2022, I4CE. (2022).
  • [17] S. Patel, World’s First Integrated Hydrogen Power-to-Power Demonstration Launched, POWER. (2020). https://www.powermag.com/worlds-first-integrated-hydrogen-power-to-power-demonstration-launched/.
  • [18] A. Kundu, Experiments and Simulations Combustion Characteristics of a Swirl Dry Low Emission Burner Concept for Gas Turbine Application, 2016.
  • [19] L. Luo, P.P. Stouffs, École doctorale Sciences Technologie et Santé Modélisation, simulation et optimisation d’un système de stockage à air comprimé couplé à un bâtiment et à une production photovoltaïque, (2018).
  • [20] M.J. IVANOV, Mathematical Models of Gas Turbine Engines And Their Components, 1994.
  • [21] C. Starmer, INDUSTRIAL GAS TURBINES., Chart. Mech. Eng. 27 (1980).
  • [22] H. Asgari, X.Q. Chen, R. Sainudiin, Modelling and simulation of gas turbines, Int. J. Model. Identif. Control. 20 (2013) 253–270. https://doi.org/10.1504/IJMIC.2013.057137.
  • [23] J.W. Chapman, T.M. Lavelle, J.S. Litt, Practical techniques for modeling gas turbine engine performance, in: 52nd AIAA/SAE/ASEE Jt. Propuls. Conf. 2016, American Institute of Aeronautics and Astronautics, Reston, Virginia, 2016. https://doi.org/10.2514/6.2016-4527.
  • [24] T.J. Ajoko, E.M. Adigio, Mathematical modelling of gas turbine diagnosis, 2012. http://www.interesjournals.org/JPGER.
  • [25] GE Power, Power to Gas: Hydrogen for power generation, Gen. Electr. Co. (2019) 2. https://www.ge.com/content/dam/gepower/global/en_US/documents/fuel-flexibility/GEA33861 Power to Gas - Hydrogen for Power Generation.pdf.
  • [26] R. Algerienne, D. Et, F.D.E. Technologie, D.D.E.G. Electrique, D.E.M. En, G. Electrique, THEME Etude et modélisation d’un turbo-alternateur, (2014).
  • [27] S.D.E. La, T. Et, B. Mohammed, Etude thermodynamique et maintenance de remerciement, (2016).
  • [28] P. Ailer, Mathematical Modeling of a Low-Power Gas Turbine Engine and Its Control System, in: Icas 2000 Congr., 2000.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cecdfa04-fc17-4428-9802-dda09f1103a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.