PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of cutting parameters in pocket milling of tempered and cryogenically treated 5754 aluminum alloy

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aluminum alloys are widely used today in plastic injection molds in the automotive and aerospace industries due to their high strength and weight ratio, good corrosion and fatigue resistance as well as high feed rates. The 5754 aluminum alloy has high corrosion resistance and a structure suitable for cold forming. In this study, an AA 5754-H111 tempered aluminum alloy with the dimensions of 80£80£30 mm was used, and some of the materials were cryogenically heat treated. For the milling operations, φ12 mm diameter 76 mm height uncoated as well as TiCN and TiAlN coated end mills were used. Different levels of cutting depth (1.25, 2.0, 2.5 mm), cutting speed (50, 80, 100 m/ min), feed rate (265, 425, 530 m/ min) and machining pattern (concentric, back and forth and inward helical) were used. The number of experiments was reduced from 486 to 54 using the Taguchi L54 orthogonal array. The values obtained at the end of the experiments were evaluated using the signal-to-noise ratio, ANOVA, three-dimensional graphs and the regression method. Based on the result of the verification experiments, the processing accuracy for surface roughness was improved from 3.20 μm to 0.90 μm, with performance increase of 71.88%.
Rocznik
Strony
697--707
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
autor
  • Düzce University, Faculty of Engineering, Department of Mechatronics, Beci Yorukler, Düzce, Turkey
autor
  • Gazi University, Faculty of Technology, Department of Manufacturing Engineering, Beşevler, Ankara, Turkey
Bibliografia
  • [1] H. Durmuş, “Optimization of multi-process parameters according to the surface quality criteria in the end milling of the AA6013 aluminum alloy”, Materials and Technology, 46(4), 383–388 (2012).
  • [2] S. Rawangwong, J. Chatthong, W. Boonchouytan, and R. Burapa, “Influence of cutting parameters in face milling semi-solid AA-7075 using carbide tool affected the surface roughness and tool wear”, Energy Procedia, 56(1), 448–457 (2014).
  • [3] P.M. Escalona and P.G. Maropoulos, “A geometrical model for surface roughness prediction when face milling Al 7075-T7351 with square insert tools”, Journal of Manufacturing Systems, 36, 216‒223 (2016).
  • [4] D. Rajeev, D. Dinakaran, and S.C.E. Singh, “Artificial neural network based tool wear estimation on dry hard turning pro-cesses of AISI 4140 steel using coated carbide tool”, Bull. Pol. Ac.: Tech., 65(4), 553‒559 (2017).
  • [5] D. Tanikic, V. Marinkovic, M. Manic, G. Devedzic, and S. Randelovic, “Application of response surface methodology and fuzzy logic based system for determining metal cutting temperature”, Bull. Pol. Ac.: Tech., 64(2), 435‒445 (2016).
  • [6] S.L. Chern, W. Y. Shih, L.L. Hung, and W.L. Jhih, “Measurement of surface profile and surface roughness of fibre-optic interconnect by fast fourier transform”, Metrology and measurement Systems, 24(2), 381‒390 (2017).
  • [7] A. Palanisamyi, T. Selvaraj, and S. Sivasankaran, “Experimental investigation and multi response optimization in turn-ing of incoloy 800 H superalloy”, Arch. Metall. Mater. 63(4), 1683‒1691 (2018).
  • [8] V. Danilevsky, Manufacturing Engineering, vol. 121, TMMOB Publishing, Ankara, 1987.
  • [9] G. Boothroyd, Fundamentals of Metal Machining and Machine Tools, 5th ed., McGraw- Hill, New York, 1981.
  • [10] J.L. Yang and J.C. Chen, “A systematic approach for identifying optimum surface roughness performance in end-milling operations”, Journal Industrial Technology, 17(1), 1–8 (2001).
  • [11] P.G. Benardos and G.C. Vosniakos, “Predicting surface rough-ness in machining: a review”, International Journal of Machine Tools and Manufacture, 43(6), 833–844 (2003).
  • [12] K.A. Risbood, U.S. Dixit, and A.D. Sahasrabudhe, “Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process”, Journal of Materials Processing Technology, 132(1‒3), 203–214 (2003).
  • [13] Y.C. Lin, Y.F. Chen, D.A. Wang, and H.S. Lee, “Optimization of machining parameters in magnetic force assisted EDM based on Taguchi method”, Journal of Materials Processing Technology, 209(7), 3374–3383 (2009).
  • [14] S. K. Khare, S. Agarwal, and S. Srivastava, “Analysis of surface roughness during turning operation by Taguchi method”, Mate-rials Today Proceedings, 5, 28089‒28097 (2018).
  • [15] Y. Liu, C. Liu, W. Liu, Y. Ma, S. Tang, C. Liang, Q. Cai, and C. Zhang, “Optimization of parameters in laser powder deposition AlSi10Mg alloy using Taguchi method”, Optics & Laser Technology, 111, 470‒480, (2019).
  • [16] M. Günay and E. Yücel, “Application of Taguchi method for determining optimum surface roughness in turning of high-alloy white cast iron”, Measurement, 46(2), 913–919 (2013).
  • [17] V. Kumar and H. Singh, “Optimization of rotary ultrasonic drilling of optical glass using Taguchi method and utility approach”, Engineering Science and Technology, an International Journal, doi.org/10.1016/j.jestch.2019.02.004.
  • [18] P. Babu GHV, B.S.N. Murthy, K.V. Rao, and K.A. Kumar, “Taguchi based optimization of process parameters in orthogonal turn milling of ASTM B319”, Materials Today Proceedings, 4(2) Part A, 2147‒2156 (2017).
  • [19] M.V. Vardhan, G. Sankaraiah, M. Yohan, and H.J. Rao, “Optimization of parameters in CNC milling of P20 steel using Response Surface Methodology and Taguchi Method”, Materials Today Proceedings, 4(8), 9163‒9169 (2017).
  • [20] S. Aravind, K. Shunmugesh, J. Biju, and J.K. Vijayan, “Optimization of micro–Drilling parameters by Taguchi Grey Rela-tional Analysis”, Materials Today Proceedings, 4(2017) 2 Part B, 4188‒4195 (2017).
  • [21] T. Kıvak, “Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts”, Measurement, 50, 19‒28 (2014).
  • [22] F. Kara and B. Öztürk, “Comparison and optimization of PVD and CVD method on surface roughness and flank wear in hard – machining of DIN 1.2738 mold steel”, Sensor Review, 39(1) 24‒33 (2019).
  • [23] F. Kara, “Optimization of surface roughness in finish milling of AISI P20+S plastic-mold steel”, Materials and Technology, 52(2), 195‒200, (2018).
  • [24] K. Shunmugesh and K. Panneerselwam, “Optimization of drilling process parameters via Taguchi, topsis and RSA techniques, Arch. Metall. Mater., 6(3) 1803‒1812 (2017).
  • [25] N.L. Bhirud and R.R. Gawande, “Optimization of process parameters during end milling and prediction of work piece temperature rise”, Archive of Mechanical Engineering, 64(3), 327‒346 (2017).
  • [26] D. Vakondios, P. Kyratsis, S. Yaldız, and A. Antoniadis, “Influence of milling strategy on the surface roughness in ball end milling of the aluminum alloy AL7075-T6”, Measurement, 45(6), 1480–1488 (2012).
  • [27] E. Kuram and B. Özçelik, “Multi-objective optimization using Taguchi based grey relational analysis for micro-milling of Al 7075 material with ball nose end mill”, Measurement, 46(6), 1849–1864 (2013).
  • [28] E.M. Rubio, A.M. Camacho, J.M. Sanchez-Sola, and M. Mar-cos, “Surface roughness of AA7050 alloy turned bars analysis of the influence of the length of machining”, Journal of Materials Processing Technology, 162‒163(1), 682–689 (2005).
  • [29] D.J. Lloyd, “Some aspects of the metallurgy of automotive al alloys”, Materials Forum, 28, 107‒117 (2004).
  • [30] S.F. Dimin, T.J.S. Anand, R. Jamli, and A. Kamely, “Surface quality investigation of Al 6061-T6511 using TiAlN coated milling tool”, International Journal of Basic & Applied Sciences IJBAS-IJENS, 10(4), 55‒59 (2010).
  • [31] K. Kadirgama, M.M. Noor, M.M. Rahman, M.R.M. Rejad, and C.H.C. Haron, “Surface roughness prediction model of 6061-T6 aluminum alloy machining using statistical method”, European Journal Scientific Research, 25(2), 250‒256 (2009).
  • [32] V. Mugendiran, A. Gnanavelbabu and R. Ramadoss, “Parameter optimization for surface roughness and wall thickness AA5052 aluminum alloy by incremental forming using response surface methodology”, Procedia Engineering, 97(1), 1991–2000 (2014).
  • [33] J.D. Kechagias, C.K. Ziogas, M.K. Pappas, and I.E. Ntziatzias, “Parameter optimization during finish end milling of Al alloy 5083 using robust design”, Proceedings of the World Congress on Engineering (WCE 2011), London, 1‒5 (2011).
  • [34] A.M. Pınar, “Optimization of process parameters with minimum surface roughness in the pocket machining of AA5083 aluminum alloy via Taguchi method”, Arabian Journal Science and Engineering, 38(3), 705–714 (2013).
  • [35] P. Chen, T. Malone, R. Bond, and P. Torres, “Effects of cryogenic treatment on the residual stress and mechanical properties of an aerospace aluminum alloy”, in Proceedings of the 4th Conference on Aerospace Materials, Processes, and Environmental Technology, United States (2000).
  • [36] K.M. Pavan, L.S. Sachin, S. Mayur, A. Chandrashekara, and B.S. Ajaykumar, “Effect of cryogenic treatment on the mechanical and microstructural properties of aluminum alloys–a brief study”, International Journal of Mechanical and Production Engineering, 2(5), 95‒99 (2014).
  • [37] H.H. Trieu, L.H. Morris, M.E. Kaufman, R. Hood, and L.S. Jenkins, “Investigation of cryogenic treatment of UHMWPE”, in Proceedings of the Sixteenth Southern Biomedical Engineering Conference, 90‒91 (1997).
  • [38] K.E. Lulay, K. Khan, and D. Chaaya, “The Effect of Cryogenic Treatments on 7075 Aluminum Alloy”, Journal of Materials Engineering and Performance, 11(5), 479‒480 (2002).
  • [39] P. Joshi, J. Singh, P. Dhiman, H. Shekhar and V. Kumar, “Effect of cryogenic treatment on various materials: A review”, HCTL Open International Journal of Technology Innovations and Research, 14, 1‒11 (2015).
  • [40] J.G. Kaufman, Introduction to Aluminum Alloy and Tempers, ASM International, USA, 2000.
  • [41] M. Nalbant, H. Gokkaya, and G. Sur, “Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning”, Materials and Design, 28(4), 1379–1385 (2007).
  • [42] C. Camposeco-Negrete, “Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using Taguchi methodology and ANOVA”, Journal of Cleaner Production, 53, 195–203 (2013)
  • [43] R.K. Roy, A Primer on the Taguchi Method, Competitive Manufacturing Series, Van Nostrand Reinhold, New York, 1990.
  • [44] C.T. Sun, Quality Engineering Off-Line Methods and Applications, CRC Press, USA, 2013.
  • [45] W.Y. Fowlkes and C.M. Creveling, Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development, Prentice Hall, New Jersey, 1995.
  • [46] D.K. Baek, T.J. Ko, and H.S. Kim, Optimization of federate in a face milling operation using a surface roughness model, International Journal of Machine Tools & Manufacture, 41 (3), 451–462 (2001).
  • [47] D. Fratila and C. Caizar, “Application of Taguchi method to selection of optimal lubrication and cutting conditions in face milling of AlMg3”, Journal of Cleaner Production, 19, 640‒645 (2011).
  • [48] G. Halevi, Process and operation planning, Kluwer Academic Publishers, Netherlands, 2003.[49] T. Hill and P. Lewick, Methods and Applications: A Comprehensive Reference for Science, Industry, Mining, StatSoft, USA, 2006.
  • [49] T. Hill and P. Lewick, Methods and Applications: A Comprehensive Reference for Science, Industry, Mining, StatSoft, USA, 2006.
  • [50] Y.T. Liu, W.C. Chang, and Y. Yamagata, “A study on optimal compensation cutting for an aspheric surface using the Taguchi method”, CIRP Journal of Manufacturing Science and Technology, 3, 40‒48 (2010).
  • [51] P.J. Ross, Taguchi Techniques for Quality Engineering, 2nd ed., McGraw-Hill, USA, 1996.
  • [52] P. Sivaiah and D. Chakradhar, “Performance improvement of cryogenic turning process during machining of 17‒4 PH stainless steel using multi objective optimization techniques”, Measurement, 136, 326‒336 (2019).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cecc61e1-f12c-4419-b6c0-096f71cc34e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.