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Operation reliability analysis based on 
fuzzy support vector machine for aircraft engines

Analiza niezawodności eksploatacyjnej silników lotniczych 
w oparciu o metodę rozmytej maszyny wektorów nośnych (FSVM)

The aircraft engine is a complex and repairable system, and the diversity of its failure modes increases the difficulty of operation 
reliability analysis. It is necessary to establish a dynamic relationship among monitoring information, failure mode and system re-
liability for achieving scientific reliability analysis for aircraft engines. This paper has used fuzzy support vector machine (FVSM) 
method to fuse condition monitoring information. The reliability analysis models including Gamma process model and Winner 
process model, respectively for different failure modes, have been presented. Furthermore, these two models have been integrated 
on the basis of competing failures’ mechanism. Bayesian model averaging has been used to analyze the effects of different failure 
modes on aircraft engines’ reliability. As a result of above, the goal of an accurate analysis of the reliability for aircraft engines 
has been achieved. Example shows the effectiveness of the proposed model.
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Silnik samolotu to złożony system naprawialny, a różnorodność przyczyn jego uszkodzeń zwiększa trudność analizy niezawodno-
ści eksploatacyjnej. Istnieje konieczność ustalenia dynamicznych związków pomiędzy monitorowaniem informacji, przyczynami 
uszkodzeń i niezawodnością systemu, których znajomość pozwoliłaby przeprowadzać naukową analizę niezawodności silników 
lotniczych. Do integracji danych z monitorowania informacji, w pracy wykorzystano metodę rozmytej maszyny wektorów nośnych 
(FSVM). Dla różnych przyczyn uszkodzeń, przedstawiono odpowiednie modele analizy niezawodności – model procesu Gamma 
i model procesu Wienera. Przedstawione modele zintegrowano na podstawie mechanizmu uszkodzeń konkurujących. Do analizy 
wpływu różnych przyczyn uszkodzeń na niezawodność silników lotniczych wykorzystano procedurę bayesowskiego uśredniania 
modeli. Dzięki powyższym krokom, osiągnięto założony cel dokładnej analizy niezawodności silników samolotowych. Przykład 
pokazuje skuteczność proponowanego modelu.

Słowa kluczowe:	 silnik samolotu, analiza niezawodności, uszkodzenie konkurujące, bayesowskie uśrednianie 
modeli, fuzja danych.

1. Introduction

The level of the aircraft engines’ reliability affects flight safety 
directly. Estimating the reliability level scientifically and objectively 
is the foundation of reliability management and decision-making of 
maintenance for aircraft engines. The difficulties of operation reli-
ability analysis for aircraft engines lie in three aspects. First, there 
are less failure data and rich condition monitoring data. Second, there 
is a problem of competing failures caused by the diversity of failure 
modes arising from the complexity of the system. Third, the opera-
tional reliability is dynamic change.

Extracting reliability information from a large amount of moni-
toring information is a common concern issue in the current theoreti-
cal and engineering field. Researchers in the United States, Britain, 
Australia and other countries promote using HUMS(health and us-
age monitoring systems) to monitor the health and use of engines, 
structure, etc, which can provide full-time health information and 
on-line monitoring, in order to make the diagnosis and prediction of 
the remaining life of the equipment, structure and operation [10]. HP 
Engine Company has developed an advanced life prediction system 
for gas turbine engines, which integrates fault prognostics and health 
management capacity [22]. Sugier J, Anders GJ [24] described the 
deterioration process by a Markov model, developed the equipment 

life curve using its various characteristics and quantified other reli-
ability parameters. Cobel proposed using data fusion method, which 
fuses condition monitoring data and fault data effectively, to predict 
the remaining life, used genetic algorithm to select optimal monitor-
ing parameters, applied GPM (General path model, GPM) to achieve 
that transform the traditional reliability analysis based on failure time 
to analysis based on failure process [7]. For the operation reliability or 
on-line reliability analyisis, Lu H et al. presented a evaluation model 
of real-time performance based on time series method, and researched 
the reliability prediction of the bit excessive wear failure by regard-
ing drill thrust as a performance monitoring parameters [15]. Elwany 
and Gebraeel presented a model for predicting system performance 
reliability based on Bayesian, and applied to parts replacement and 
inventory decisions [8]. Li et al. discussed the multi-state coherent 
system composed of multi-state components [14]. Chinnam made use 
of the reliability condition of some parts which performance degener-
ate signals were monitored and adopted a general polynomial regres-
sion model to describe performance change [6]. 

For complex systems, the reliability evaluation of single failure 
mode or single point of failure is an ideal assumption. But in terms 
of practical situation of aircraft engines, the failure modes are vari-
ous and multi-failure modes often coexist. The failure modes can be 
divided into degradation failure and sudden failure only on the basis 
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of major categories of classification. Different failure modes interact 
each other, constantly change their forms of expression and mecha-
nism of action in different stages of the running system. It is a problem 
of competing failures in essence, increasing the complexity of the reli-
ability evaluation. The problem of competing failures has drawn a lot 
of concern in the field of reliability engineering. Lehmann  surveyed 
some approaches to model the relationship between failure time data 
and covariate data like internal degradation and external environ-
ment models [13]. Bagdonavičius et al. made use of the half updating 
process of the linear degradation model to study the non-parameter 
estimation method of competing failure model, and to simplify the 
calculation, the model used decomposition method [1]. Pareek et al. 
studied the problem of censored data processing for competing fail-
ures [16]. Bedford et al. presented a competing risks reliability model 
for a system that releases signals each time of its condition deterio-
rates and provided a framework for the determination of the underly-
ing system time from right-censored data [2]. Su et al. regarded the 
incidence of sudden failure as the function of performance degrada-
tion amount, made use of Wiener process to describe the degradation 
process, and proposed a reliability evaluation model for competing 
failures [23]. Bocchetti et al. proposed a competing risk model to de-
scribe the reliability of the cylinder liners of a marine Diesel engine, 
in which the wear process is described by a stochastic process and the 
failure time due to the thermal cracking is described by the Weibull 
distribution [3]. Park et al.[17] and Kundu et al. [12] considered the 
analysis of incomplete data in the presence of competing risks among 
several groups. Chen et al. developed methods for competing risks 
when individual events are correlated with clusters [4]. Wang et al. 
used Bivariate exponential models to analyze competing risks data 
involving two correlated risk components [26]. Xing et al. presented 
a combinatorial method for the reliability analysis of system subject 
to competing propagated failures and failure isolation effect [27]. 
Salinas-Torres et al. [20] and Polpo et al. [19] proposed the Bayesian 
nonparametric estimator of the reliability of a series system under a 
competing risk scenario. Peng et al. developed reliability models and 
preventive maintenance policies for systems subject to multiple De-
pendent Competing Failure Process (MDCFP) [18].

For the characteristics of aircraft engines’ opertion reliability, the 
information fusion technology will be referenced to the aircraft en-
gines’ reliability modeling and the input parameters of the reliability 
model will be determined by information fusion. The impacts of com-
peting failure modes on system reliability will be analyzed through 
data. The paper will use fuzzy support vector machine to fuse on-
line condition monotoring data. Further,  Bayesian model averaging 
method are used to study the data, to select the optimal model, and 
to propose a reliability analysis model for aircraft engines based on 
competing failures.

2. The modeling framework of operation reliability 
analysis for aircraft engines

The paper intends to combine the recent research results concern-
ing operation reliability analysis and competing failures, and to pro-
pose operation reliability analysis methods based on competing fail-
ures for aircraft engines. The monitoring information characteristics 
of aircraft engines are reflected in the following aspects. First, there 
are multi-source monitoring information to monitor aircraft engines 
operation reliability. Second, there are insufficient monitoring infor-
mation because of monitoring cost consideration. Third, the monitor-
ing infomation often has some noise because of operation environ-
ment change and sensor reliability. Therefore, it can be concluded that 
for the analysis and prediction of aircraft engines performance, the 
problem consists in the data analysis of small sample and high noise. 
Fuzzy support vector machine has been selected to model operation 
condition of aircraft engines. Failure mechanism of aircraft engines 

should be considered, establishing the reliability anaylysis models re-
spectively for the different failure modes. In the case of different fail-
ure modes coexist, the reliability analysis model based on competing 
failures is established. The modelling process is shown in Fig.1.

3. Performance degradation analysis of aircraft en-
gines

In the aircraft engine operation process, performance degradation 
is the main reason leading to reliability decrease. So, it is necessary 
to evaluate performance degradation. By evaluating the performance 
degradation level, performance degradation reliability of aircraft en-
gines can be evaluated. The performance degradation evaluation is 
based on condition monitoring information, through processing and 
fusion condition monitoring information of aircraft engines. 

3.1.	 Condition monitoring information of aircraft engines

The performance monitoring of aircraft engines includes three 
categories, namely, gas path monitoring, oil monitoring and vibra-
tion monitoring. The engines’ performance degradation (or reduced 
efficiency) will usually be reflected in changes of monitoring param-
eters.

Gas path monitoring. Gas path system is the key composition I	
of aircraft engines, which includes air-compressor, combustor 
and turbine, etc. Gas path monitoring consists of some subsets 
of inter-stage pressure and temperatures, spool speeds and fuel 
flow. The main monitoring parameters of gas path are exhaust 
gas temperature and fuel flow.

Oil monitoring. Oil monitoring includes various oil system tem-II	
perature, pressures, fuel temperature, and delivery pressure. Oil 
monitoring are the auxiliary instruments for aircraft engines, 
which can be used for monitoring components of lubrication sys-
tem and its sealing. The main oil monitoring parameters are oil 
pressure, oil temperature, and oil consumption rate. 

Vibration measurements. High and low spools of aircraft engi-III	
nes are composed of blades, plates, axis and bearings. There are 
some vibration signals while wear and damage occur during rota-
tion. The key parameters of vibration measurements include low 
pressure vibration  and high pressure vibration.

The performance degradation is usually reflected on the change 
of condition monitoring parameters. For example, if exhaust gas tem-
perature exceeds the standard, oil consumption rate will increase, or 

The performance 
degradation evaluation

Analyze the mechanisms of 
degradation failures 

Compute by Monte-Carlo 
Markov chain

Establish different 
reliability model for 

different failure modes

The condition monitoring 
information of aircraft engines

Gamma process 
model

Establish operation reliability 
analysis model based on BMA

Condition information 
fusion byFSVM

Wiener process 
model

Get the operation reliability of 
aircraft engines

Fig. 1.	 The flow diagram of operation reliability analysis for aircraft engines 
based on FSVM
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high pressure rotor speed deviation will occur, and a conclusion can 
be drawn that the aircraft engine is deteriorating. 

3.2.	 Performance degradation evaluation based on fuzzy 
support vector machine

Comprehensively using above parameters to reflect the perform-
ance degradation of aircraft engines from the multi-dimensional per-
spective will be more realistic. In the paper, the problem can be solved 
by using fuzzy support vector machine. The advantages of fuzzy sup-
port vector machine method are shown as followed:

First, support vector machine (SVM) is presented as the study sys-
tem of supposed linear function space which is used in high-dimen-
sion feature space by Vapnik and others [25] according to principles 
of structure risk minimization in study theory of statistics; it finds 
the best compromise between complexity of method and study ability 
according to limited sample information; it takes advantage of sup-
porting vector machine in dealing with small sample and prediction 
to make it come true that it can be a highly effective conducting infer-
ence from training data sample to prediction sample,  and to solve the 
reality problems of small sample, nonlinear, high dimension and local 
minimum point more sufficiently [21].

Second, fuzzy support vector machine can excellently handle 
samples with noise and outlier rejecting. It can achieve the goal of 
eliminating the influence of noise and outlier rejecting samples by 
applying fuzzy technology to support vector machine, using different 
punishment weight coefficients for different samples, giving smaller 
weight to samples with noise and outlier rejecting [9, 11]. There are a 
lot of applications by FSVM prediction. For example, Cheng et al uti-
lized weighted SVM, fuzzy logic and fast messy Genetic Algorithm 
(fmGA) to handle distinct characteristics in Estimate at Completion 
(EAC) prediction [5].

3.3.	 Fuzzy support vector machine algorithm

Method of support vector machine(1)	
Note that training sample is denoted by x y i li i, , , ,( ) ={ }1 2  . In 

the sample, n
ix R∈  is input variables, iy R∈  is output variables. 

Nonlinear mapping φ ⋅( )  is to input the sample from late space map-
ping to high-dimension feature space,  and construct best decision 
function in this feature space: f x x b( ) = ⋅ ( ) +( )ω φ  ,where ω φ⋅ ( )x  

is set as the scalar product of vector  and mapping function , b is the 
bias. Thus, the corresponding constraint optimization problem can be 
shown as:
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fined error of insensitive pricing function Vapnik-ε. Eq.(1) has set the 
optimization problem which is a typical convex quadratic program-
ming problem. According to Lagrange theory, weight vector  equals to 
the linear combination of training data:
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Putting Eq.(2) in Eq.(1), the prediction values of the unknown 
point can be got as followed.
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Where K x x x xi i,( ) = ( ) ⋅ ( )φ φ  is denoted as kernel function. 

Model of fuzzy support vector machine(2)	
Fuzzy support vector machine introduces fuzzy theory into sup-

port vector, and adds a membership attribute µ δ ≤ ≤( )s 1  to every 
sample ( ),x y  ,where δ  is arbitrarily small positive to show the sub-
ordination degree between sample x and type y.

Denoting the training sample as:

	 U x y u x R ui i i i
n
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Thus, its corresponding optimization problem is:
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As is known from Eq. (5), this kind of fuzzy support vector ma-
chine, which makes samples with different membership, plays differ-
ent roles in point training just by fussing the penalty factor C . The 
bigger µi  is, the more important the sample is, and the less possible 
the classification mistake is. When it is noise or outlier rejecting, the 
sample will reduce the effort on training by giving very small value to 
its membership so that it can widely reduce the influence of noise or 
outlier rejecting to support vector machine. 

Method of determining membership(3)	
In order to determine the relationship between effective sample 

with outlier rejecting or noise, the paper uses affinity to determine 
membership function.  After having found the smallest hyper-sphere 
of the sample set in feature space, marking the core and radius of the 
smallest hyper-sphere with a  and r  , thus the membership of the 
sample can be described as followed:
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This method makes a distinction between effective sample from 
noise or outlier rejecting more effectively and takes different calcula-
tion method of membership to effective sample and noise or outlier 
rejecting, and under the situation of maintaining support vector and 
membership big enough, it also can reduces the membership of noise 
and outlier rejecting so that it reduces the sensitivity of fuzzy support 
vector machine for noise.  The calculation of membership is achieved 
by determining the radius of the smallest hyper-sphere.
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4. Performance degradation analysis of aircraft en-
gines

Considered the multi-failure mode, sole reliability model is diffi-
cult to analyze aircraft engines reliability. The paper chooses Gamma 
process and Wiener process to describe aircraft engines operation reli-
ability. Gamma process model mainly applied in the gradual perform-
ance degradation and reliability monotone decreasing. Wiener process 
model mainly applied in the structural reliability analysis, which has 
the function of describing multi-factors random disturbance effect on 
reliability. Using above two reliability analysis model, the reliability 
change law can be described comprehensively.

4.1.	 Gamma process reliability analysis model

Let ( )y t  be the amount of performance degradation failures at 
time t  and l  be the failures threshold. When ( )y t l≥ , aircraft en-
gines will come up with performance degradation failures. Aircraft 
engines’ performance degradation is irreversible, that is, the perform-
ance gradually decreases and the amount of performance degradation 
is constantly increasing with the use of time. Therefore, the Gamma 
process can be applied to describe the degradation process. Assume 
that 0y is aircraft engines’ initial performance, so w t y t y t( ) = ( ) − ( )0  
represents the accumulated deterioration at time t . Because degrada-
tion amount increases monotonically, for any it , jt , if j it t> , there 
must be w t w tj i( ) − ( ) > 0 . Assume that degradation amount w t( )  
obey Ga tµ λ( )( ), , its density function can be expressed as follows:

	 f t
t

eg

t
tξ α λ

λ
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ζ
α

µ λζ, ,( )( ) = ( )( )
( )

( )− −

Γ
1 	 (7)

where, α  and λ  represent shape parameter and scale parameter re-
spectively; Γ α α( ) = − −∞

∫ t e dtt1
0

 is Gamma function.
Generally assume that the scale parameter does not change in a 

performance monitoring process. Shape parameter changes with the 
change of the degradation process, because the extent and rate of the 
performance degradation experience an increasing trend, so we as-
sume that shape parameter is proportional with expected degradation 
degree and time power, that is:

	 α t ktv( ) = 	 (8)

Further, Eq.(7) can be transformed as following:
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Based on the theory of system reliability, the reliability for degra-
dation failures can be depicted as following:

	 R t P T t P w tg ( ) = >{ }⇒ ( ) <{ }ε 	 (10)

where, ε  is the failure threshold for performance degradation of an 
aircraft engine.

Then, the reliability evaluation for performance degradation of an 
aircraft engine can be depicted as following:
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4.2. Wiener reliability analysis model

The Wiener process from Brown motion in the physics. Denoted 
degradation amout ( )w t  as the following:

	 w t t B t( ) ( )= +η δ ,   0t ≥ 	 (12)

The stochastic process is defined as { }( )W t ,If 0t > , { }( )W t is de-
fined as Wiener process and satisfy the following assumptions:

(0) 0w =I	 ;

{ }( )w tII	 ; 0t > with a stationary independent increments;

For anyIII	 0t > ,{ }( )w t is normal random variable, whose mean is 
0, the variance is δ 2t ;

For any 0 s≤ < ∞ , W t W s( ) ( )−[ ]  
follow Gaussian distributions 
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




2 .

Assuming that the aircraft engine failure threshold is, the failure 
time of aircraft engine is described as the following:

	 { }inf ; ( )T t w t w= > 	 (13)

Accordingly, at this time aircraft engine opertaion reliability is:
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The probability distribution function is described as the follow-
ing:
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Distribution form for the above is Inverse Gaussian, denoted as 
t IG~ ,µ β( ) .

4.3.	 Reliability analysis of aircraft engines using Bayesian 
model averaging(BMA)

For the complex system like aircraft engines, single reliability 
model is difficult to objectively describe the reliability change proc-
ess. It is necessary to use multi-model technology to comprehensively 
analysis multi-modes of aircraft engines, which will improve the ac-
curacy of reliability analysis and prediction. To study the mechanism 
of different reliability models, this paper will use Bayesian model 
averaging method. Bayesian model averaging (Bayesian model av-
eraging, BMA) is a probability forecast approach that is proposed re-
cently and is used in multi-mode collection. The forecast probability 
density function (PDF) of a particular variable in BMA, is a weighted 
average of a single model forecast probability distribution after devia-
tion correction, and the weight is the corresponding model’s posterior 
probability which represents each model’s relative forecast skill in the 
model training phase. The secondary use of condition monitoring data 
and event data can be achieved through BMA technology. And this 
not only solves the problem of reliability analysis based on a single 
failures mode, but also solves the problem of interaction of multiple 
failures modes. Based on the data re-learning, the goal of an accurate 
analysis of civil aircraft system reliability can be achieved. 

The multi-model is described as the following:
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	 p X M P M p M p X Mk k k k k k k, , ,θ θ θ( ) = ( ) ( ) ( ) 	 (16)

k ∈κ  represents the index of model, ( )kP M  represents the prior 
density function of kM , p Mk kθ( )  represents the conditional prob-
ability of θk under the model kM , p X Mk kθ ,( )  represents the con-
ditional probability function of event X  under the model kM  and the 
parameter θk .

The probability of event X  under the model kM can be computed 
as following:

	 P X M p M p X M dk k k k k k
k

( ) = ( ) ( )∫ ¸ θ θ,
Θ

	 (17)

Using Bayes theorem, the posterior density can be described as 
following:

	 P M X
P M P X M

P Xk
k k( ) = ( ) ( )
( )

	 (18)

The prediction effect is compared the actual value with the predic-
tion value. The weight can be assigned by the Monte-Carlo Markov 
chain method.

For the aircraft engines, { }1 2,M M M=  represents the reliability 

analysis models 1M represents the gamma reliability analysis model, 

2M  represents the Wiener process reliability analysis model. Opera-
tion reliability analysis model for aircraft engines can be described as 
following:
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( )1,2jM j =  represents the reliability analysis model which 

should be averaged, p R f Rj j
T,( )( )  represents the probability den-

sity function of single failure model, which is the probabiliy density 
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The posterior expection and variance of reliability by BMA can be 

described as following:
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Where, σ j
2  is the prediction error of model jM  under data set D . 

From eq. (21) the prediction variance of BMA include two intem, the 
first is the dispersion degree in the set, the second is the variance of 
prediction model itself.

In the paper, we use Markov Monte-Carlo (Markov Chain Monte 
Carlo, MCMC) simulation algorithm to calculate the failure mode 
weighting model in BMA model. MCMC is an important method to 
deal with complex statistical problems, especially for high dimension-
al integrals by Monte Carlo to compute the posterior distribution den-
sity. MCMC algorithm uses a number of different Markov chain, ran-
dom sampling got based on BMA weights and variance in the 
likelihood function of weight variables. Considering the model weight 
itself is random, we assumes the weight is normal distribution. Using 
Metropolis-Hastings sampling technique, for the probability density 
function π ρi( )  for the unknown parameters ρi i =( )1 2, . Choose 

start point ρi
0( ) , meet π ρi

0 0( )( ) > , produce Markov chain accord-

ing to the following steps iteration:
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Get a random C.	 u  from ( )0,1U , if u i
m

i< ( )−( )π ρ ρ1 , * , the can-

didate point is accepted, and ρ ρi
m

i
( ) = * . Otherwise,

ρ ρi
m

i
m( ) −( )= 1 .

After enough iterations, M-H algorithm makes the Markov chain 
converges to the target distribution.

5. Example

Table 1 shows the 36 samples which have repaired and replaced 
engines. There are six parameters have been monitored, which are 
DEGT (the deviation exhaust gas tempreture), DWF (the deviation of 
fuel flow ), DOP (the deviation of oil pressure), DHPRS (the devia-
tion of high pressure rotor speed), DLPRV ( the deviation of the low 
pressure rotor vibration value) and DHPRV (the deviation of high-
pressure rotor vibration value). The engines’ TSI (Time Since Instal-
lation) and FH (Fight Hour) from the beginning of the monitoring 
moment can be obtained. From the data of Table 1, the relationship 
between PDD (Performance Degradation Degree) and  the various 
monitoring parameters can be extracted by the FVSM. In Table 1, the 
former 24 samples are as training samples and the latter 12 samples 
are as test samples.

The training samples comparison between predictive values and 
real values are shown in Fig. 2 and the test samples comparison be-
tween predictive values and real values are shown in Fig. 3. As far as 
the comparison between the real value and predictive value by Fig. 2 
and Fig. 3, there are good effectiveness of prediction. By computa-
tion,  the total predictive error is below 10% , and the result satisfy 
the basic demand of performance degradation evaluation of aircraft 
engines.

By collecting 9 samples condition monitoring parameters of some 
on-wing aircraft engines, the performance degradation degree can be 
calculated . Then, the performance degradation degree can be used as  
input variable, the gamma reliability model and the Wiener reliability 
model are used to analyze reliability of aircraft engine, respectively. 



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.17, No. 2, 2015 191

Science and Technology

The parameters of Gamma reliability model and Wiener reliability 
model are shown in Table 2.

At the same time, BMA are used to calculated the each model 
weight, then the reliability model of aircraft engine can be calculated 
integrated Gamma reliability model and Wiener reliability model into 
one framework. The computation results by different reliability model 
are also shown in Table 2. The reliability comparison among Gamma 
reliability model, Wiener reliability model and BMA reliability model 
are shown in Fig. 4. From Fig. 4, BMA reliability model are aver-
aged by Gamma reliability model and Wiener reliability model. Fig. 
5 gives the probability density function of Gamma reliability model 

Table 1.	 Key performance monitoring parameters for some aircraft engines

Monitoring point DEGT DWF DOP FHPRS DLPRV ZVB2R TSI(FH) PDD

1 7.51 2.54 1.89 -7.27 1.06 0.32 4055 0.1192

2 -4.74 3.52 1.92 -5.16 0.52 0.55 7095 0.0459

3 -0.03 2.03 1.19 -8.33 0.57 0.37 7801 0.0378

4 8.04 5.16 1.69 -7.74 0.24 0.57 3331 0.1176

5 7.77 7.80 2.12 -6.81 0.86 0.46 3832 0.1207

6 4.69 2.66 1.83 -3.76 0.31 0.51 3282 0.1028

        

32 4.23 4.83 1.96 -58.92 0.17 0.62 3397 0.096

33 14.28 5.25 1.63 -2.03 0.78 0.94 1422 0.1572

34 11.38 3.14 1.63 4.19 0.23 0.74 3330 0.1465

35 8.24 3.17 2.18 9.78 1.05 0.76 1954 0.1185

36 9.12 3.37 1.78 6.89 0.31 0.46 6752 0.1290

Table 2.	 The reliability parameters and reliability analysis results by different reliability models

No Running time
ti(FH)

Gamma reliability model Wiener reliability model

BMAR
ia ib Gρ GR iη iδ Wρ WR

1 493 1.31 36815 0.179 0.9970 1.042×10−5 1.556×10−3 0.821 0.9970 0.9970 

2 1052 1.28 34921 0.358 0.9904 1.711×10−5 1.163×10−3 0.642 0.9909 0.9907 

3 1707 1.26 33028 0.419 0.9796 1.757×10−5 8.823×10−4 0.581 0.9726 0.9755 

4 2109 1.25 32392 0.525 0.9720 1.660×10−5 7.608×10−4 0.475 0.9686 0.9704 

5 2805 1.23 36053 0.576 0.9630 1426×10−5 6.432×10−4 0.424 0.9608 0.9621 

6 3206 1.22 35216 0.647 0.9541 1.560×10−5 5.289×10−4 0.353 0.9525 0.9535 

7 3924 1.19 36893 0.751 0.9401 1.626×10−5 3.777×10−4 0.249 0.9370 0.9393 

8 4740 1.18 37029 0.415 0.9243 1.688×10−5 2.060×10−4 0.585 0.9207 0.9222 

9 5595 1.16 38351 0.392 0.9080 1.698×10−5 5.142×10−5 0.608 0.9030 0.9050 

Fig. 2.	 Performance degradation degree comparison between predictive val-
ues and real values on tranning samples

Fig. 3.	 Performance degradation degree comparison between predictive val-
ues and real values on test samples 

Fig. 4.	 Reliability curve of different reliability model s on aircraft engines
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weight. Fig. 6 gives the probability density function of Wiener reli-
ability model weight.

For the three alternative models, the Gamma reliability model and 
Wiener reliability model represent the different failure mode. BMA 
reliability model represent the different failure modes into one frame-
work by computing the different reliability model weight. So, BMA 
can really analyze the mechanism of action between the different 
failure modes through learning different data. The advantages of the 
model are that it has higher forecast accuracy and it can effectively 
avoid the reliability overestimate or underestimate.

6. Conclusion

In this paper, the mechanism of different failure modes aircraft 
engines has been analyzed. Fuzzy support vector machine (FVSM) 
method are used to fuse condition monitoring information. The reli-
ability analysis models including Gamma process model and Wiener 
process model, respectively for different failure modes, have been 

presented. Furthermore, these two models have been integrated on 
the basis of competing failures’ mechanism. BMA has been used to 
analyze the impacts of different failure modes on aircraft engines’ 
reliability. A reliability evaluation model for competing failures has 
been proposed, and the traditional model of competing failures has 
been transformed. This method not only can make full use of condi-
tion monitoring information, but also can analyze the mechanism and 
transforming relationship between different failure modes through 
data learning. The method should be studied further.
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