L Międzyuczelniana Konferencja Metrologów

MKM 2018

Szczecin - Kopenhaga, 10-12 września 2018

doi: 10.32016/1.59.43

UOGÓLNIONY MODEL MATEMATYCZNY PRZETWORNIKÓW JEDNOCZESNYCH ZMIAN DWÓCH PARAMETRÓW DWÓJNIKÓW RC / GC O WYJŚCIU CZĘSTOTLIWOŚCIOWYM

Lesław TOPÓR-KAMIŃSKI¹, Janusz GUZIK², Adam PILŚNIAK³

- 1. Politechnika Śląska, Katedra Metrologii, Elektroniki i Automatyki tel.: 32 237 25 12, e-mail: leslaw.topor-kaminski@polsl.pl
- 2. Politechnika Śląska, Katedra Metrologii, Elektroniki i Automatyki
- tel.: 32 237 29 91, e-mail: janusz.guzik@polsl.pl 3. Politechnika Ślaska, Katedra Metrologii, Elektroniki i A
- Politechnika Śląska, Katedra Metrologii, Elektroniki i Automatyki tel.: 32 237 26 54, e-mail: adam.pilsniak@polsl.pl

Streszczenie: W pracy przedstawiono uogólniony model matematyczny nowej klasy przetworników parametrów {(R;C), (C; $tg\delta=\omega RC$), (G;C; ($tg\delta=G/\omega C$)} (dwójników RC postaci $Z = R+1/j\omega C$ lub dwójników GC postaci $Y = G+j\omega C$), pozwalających w oparciu o układ oscylatora kwadraturowego rzędu trzeciego (por. rysunek 1a,b) na jednoczesny pomiar tych dwóch parametrów, przy czym zmianom jednego z parametrów (C) odpowiadają zmiany wartości pulsacji ω sygnału wyjściowego przetwornika, natomiast zmianom wartości drugiego z parametrów (R, G, $tg\delta$) – odpowiednio – wzrost lub spadek wartości amplitudy U_1 i U_2 generowanych sygnałów. Wskazano przy tym na optymalne układy analizowanej klasy przetworników.

Słowa kluczowe: dwójnik typu *RC / GC*, przetwornik zmian parametrów impedancji – częstotliwość, oscylator kwadraturowy rzędu trzeciego, transkonduktancyjny wzmacniacz operacyjny (OTA).

1. WSTĘP

W literaturze (np. [1, 2]) opisanych jest wiele różnych metod pomiaru składowych impedancji Z dwójników RC postaci Z = R+1/j ω C lub admitancji Y dwójników GC postaci Y = G+j ω C. Jedną z rozwijanych w ostatnim okresie klas przetworników są układy oparte o przetwarzanie parametrów impedancji - wybranych spośród par {(R;C), (C; $tg\delta=\omega$ RC)} lub {(G;C); (C; $tg\delta=G/\omega$ C)} - na częstotliwość, w których wykorzystywane są przeróżne konstrukcje oscylatorów [3]. Jednym z charakterystycznych, kluczowych kryteriów podziału takich przetworników jest między innymi rząd *n* równania charakterystycznego opisującego układ oscylatora [4, 5, 6, 7].

Dotychczas opracowywane przetworniki składowych impedancji na częstotliwość wykorzystywały zazwyczaj oscylatory rzędu n=2 i umożliwiały na ogół przetwarzanie tylko jednego parametru dwójników typu *RC* lub *GC* [3].

Z kolei zastosowanie oscylatorów rzędu trzeciego, tj. o n=3, pozwala na zarówno mniejszą zawartość wyższych harmonicznych w wytwarzanych oscylacjach [8], jak i na zasygnalizowaną w pracy [9] możliwość jednoczesnego pomiaru dwóch parametrów takich dwójników.

2. PODSTAWOWE ZALEŻNOŚCI

W dalszym ciągu w niniejszym artykule zaprezentowano opis uogólnionego modelu matematycznego analizowanej klasy przetworników do jednoczesnego pomiaru dwóch parametrów dwójników zarówno typu *RC* jak i *GC* - zilustrowanych odpowiednio na rys.1a,b.

Rys. 1. Przetwornik jednoczesnych zmian parametrów dwójników RC / GC postaci: { $(R_0; C_0), (C_0; tg\delta_0)$ } (a) oraz { $(G_0; C_0), (C_0; tg\delta_0)$ } (b)

Wykorzystano do tego celu układ oscylatora kwadraturowego rzędu n=3 z zastosowaniem 3 transkonduktancyjnych wzmacniaczy operacyjnych OTA1 – OTA3 [8, 9].

Pracę układu przetwornika według rysunku 1a,b opisuje równanie charakterystyczne rzędu *n*=3 postaci: $a_0 + a_1s + a_2s^2 + a_3s^3 = 0$, co pozwala na określenie zawartych w tabelach 1 i 2 wartości pulsacji oscylacji $\omega = \omega_G = \omega_0$ [8, 9]:

$$\omega_G = \sqrt{a_0/a_2} \tag{1a}$$

$$\omega_0 = \sqrt{a_1/a_3} \quad . \tag{1b}$$

Tabela 1. Zestawienie wartości danych $\omega = \omega_G = \omega_0$ dla przetwornika parametrów dwójników *RC* wg rys.1a

$\omega = f(C_0) = \sqrt{\frac{g_{m1}g_{m2}g_{m3}(R_0C_0 + R_1C_1 + R_2C_2)}{C_0C_1C_2 + g_{m1}g_{m2}g_{m3}R_0C_0R_1C_1R_2C_2}}$	$\begin{array}{c} Z_0 - Z_1 - \\ Z_2 \end{array}$
$(R_1 = 0; R_2C_2 >> R_0C_0):$	Wariant
$\omega = f(C_0) = \sqrt{\frac{g_{m1}g_{m2}g_{m3}R_2}{C_0C_1}}$	
$(R_2 = 0; R_1C_1 >> R_0C_0):$	
$\omega = f(C_0) = \sqrt{\frac{g_{m1}g_{m2}g_{m3}R_1}{C_0C_2}}$	
$\omega = f(C_0) = \sqrt{\frac{g_{m1}g_{m2}g_{m3}(R_0C_0 + R_2C_2)}{C_0C_1C_2}}$	$\begin{array}{c} Z_0 - Y_1 - \\ Z_2 \end{array}$
$R_2C_2 >> R_0C_0$:	Wariant
$\omega = f(C_0) = \sqrt{\frac{g_{m1}g_{m2}g_{m3}R_2}{C_0C_1}}$	
$\omega = f(C_0) = \sqrt{\frac{g_{m1}g_{m2}g_{m3}(R_0C_0 + R_1C_1)}{C_0C_1C_2}}$	$\begin{array}{c} Z_0 - Z_1 - \\ Y_2 \end{array}$
$R_1C_1 >> R_0C_0$:	Wariant
$\omega = f(C_0) = \sqrt{\frac{g_{m1}g_{m2}g_{m3}R_1}{C_0C_2}}$	
$\omega = f(C_0) = \sqrt{\frac{g_{m1}g_{m2}g_{m3}}{G_1C_0C_2 + G_2C_0C_1}}$	$\begin{array}{c} Z_0 - Y_1 - \\ Y_2 \end{array}$
$G_1 = 0$:	Wariant
$\omega = f(C_0) = \sqrt{\frac{g_{m1}g_{m2}g_{m3}}{G_2C_0C_1}}$	
$G_2 = 0:$	
$\omega = f(C_0) = \sqrt{\frac{g_{m1}g_{m2}g_{m3}}{G_1C_0C_2}}$	

Sygnałami wyjściowymi przetworników wg rysunku la,b są tutaj napięcia U_1 oraz U_2 , przy czym występuje dla nich cecha typowa dla oscylatorów kwadraturowych, tj. przesunięcie fazowe tych napięć względem siebie o kąt $\pi/2$ [4, 5, 6, 7].

W cytowanych już pracach [8,9] pokazano, że dla relacji $\omega = \omega_G = \omega_0$ mamy do czynienia z sygnałami sinusoidalnymi U_1 lub U_2 o jednakowej amplitudzie, co można względnie łatwo stwierdzić doświadczalnie oscyloskopem dwukanałowym metodą krzywych Lissajoux [1, 2]. Ma to miejsce wtedy, gdy [9]:

Tabela 2. Zestawienie wartości danych $\omega = \omega_G = \omega_0$ dla przetwornika parametrów dwójników *GC* wg rys.1b

$Y_0 - Y_1 - Y_2$	$\omega = f(C_0) = \sqrt{\frac{g_{m1}g_{m2}g_{m3}}{G_0C_1C_2 + G_2C_0C_1 + G_1C_0C_2}}$
Wariant	$(G_1 = 0; G_2C_0 >> G_0C_2):$
	$\omega = f(C_0) = \sqrt{\frac{g_{m1}g_{m2}g_{m3}}{G_2C_0C_1}}$
	$(G_2 = 0; G_1C_0 >> G_0C_1):$
	$\omega = f(C_0) = \sqrt{\frac{g_{m1}g_{m2}g_{m3}}{G_1C_0C_2}}$
$Y_0 - Z_1 - Y_2$	$\omega = f(C_0) = \sqrt{\frac{G_0 G_2 C_1 + g_{m1} g_{m2} g_{m3} R_1 C_1}{C_0 C_1 C_2}}$
Wariant	$G_2 = 0:$
	$\omega = f(C_0) = \sqrt{\frac{g_{m1}g_{m2}g_{m3}R_1}{C_0C_2}}$
$Y_0 - Y_1 - Z_2$	$\omega = f(C_0) = \sqrt{\frac{G_0 G_1 C_2 + g_{m1} g_{m2} g_{m3} R_2 C_2}{C_0 C_1 C_2}}$
Wariant	$G_1 = 0:$
	$\omega = f(C_0) = \sqrt{\frac{g_{m1}g_{m2}g_{m3}R_2}{C_0C_1}}$
$Y_0-Z_1-Z_2$	$\omega = f(C_0) = \sqrt{\frac{g_{m1}g_{m2}g_{m3}(R_1C_1 + R_2C_2)}{C_0C_1C_2}}$
Wariant	$R_1 = 0$:
	$\omega = f(C_0) = \sqrt{\frac{g_{m1}g_{m2}g_{m3}R_2}{C_0C_1}}$
	$R_2 = 0$:
	$\omega = f(C_0) = \sqrt{\frac{g_{m1}g_{m2}g_{m3}\overline{R_1}}{C_0C_2}}$
	$\frac{a_0}{a_2} = \frac{a_1}{a_3}$ (1)

Warto podkreślić, że brak spełnienia warunku (2) prowadzi wprost do powstania łatwo stwierdzalnych tłumionych lub narastających oscylacji o wartości pulsacji ω . W dalszym ciągu w tabelach 3 i 4 zestawiono szczegółowe postacie warunku (2).

3. WYBÓR OPTYMALNEJ POSTACI RÓWNAŃ PRZETWARZANIA UOGÓLNIONEGO MODELU ANALIZOWANEJ KLASY PRZETWORNIKÓW PARAMETRÓW DWÓJNIKÓW RC / GC

Równania przetwarzania dla uogólnionego modelu przetworników parametrów dwójników *RC* / *GC* według rysunku 1a,b są tutaj następujące. Wartość składowej biernej C_0 przetwarzana jest wprost na częstotliwość (tu: pulsację $\omega = \omega_G = \omega_0$), zgodnie z wzorami zawartymi w tabelach 1 i 2 typu $\omega = f(C_0) = k / \sqrt{C_0}$, gdzie *k* jest pewną stałą.

Tabela 3. Zestawienie szczegółowych postaci warunku (2) dla przetwornika parametrów dwójników *RC* wg rys.1a

$Z_0 - Z_1 - Z_2$	1
	$\frac{1}{R_0C_0(R_1C_1 + R_2C_2) + R_1C_1R_2C_2} =$
	$= \frac{g_{m1}g_{m2}g_{m3}(R_0C_0 + R_1C_1 + R_2C_2)}{2}$
	$C_0C_1C_2 + g_{m1}g_{m2}g_{m3}R_0C_0R_1C_1R_2C_2$
Wariant	$(R_1 = 0; R_2C_2 >> R_0C_0):$
	$R_0 = \frac{C_1}{2} = g(C_2);$
	$R_2^2 C_2 g_{m1} g_{m2} g_{m3}$
	$tg\delta_0 = \frac{1}{cP_0C} = \frac{1}{cP_0C} = h(C_2)$
	$\frac{\partial R_2 C_2}{(R_1 = 0; R C_1 \implies R C_2)}$
	$(R_2 = 0, R_1 C_1 > > R_0 C_0).$
	$R_0 = \frac{C_2}{R_1^2 C_1 g_{m1} g_{m2} g_{m3}} = g(C_1);$
	$tg \partial_0 = \frac{1}{\omega R_1 C_1} = \frac{1}{tg \delta_1} = h(C_1)$
Z_0 - Y_1 - Z_2	$\frac{1}{1} = \frac{R_0 C_0 + R_2 C_2}{1}$
	$G_1C_0C_2 + g_{m1}g_{m2}g_{m3}R_0C_0R_2C_2 \qquad C_0C_1C_2$
Wariant	$R_2C_2 >> R_0C_0$:
	$R_0 = \frac{C_1 - R_2 G_1 C_2}{C_2} = g(C_2);$
	$R_2^2 C_2 g_{m1} g_{m2} g_{m3}$
	$tg\delta_0 = \frac{1}{C_1 - R_2 G_1 C_2} = h(C_2)$
	$tg\delta_2$ C_1
$Z_0 - Z_1 - Y_2$	$\frac{1}{R_0 C_0 + R_1 C_1} = \frac{R_0 C_0 + R_1 C_1}{R_0 C_0 + R_1 C_1}$
X <i>I</i> ' ($G_2C_0C_1 + g_{m1}g_{m2}g_{m3}R_0C_0R_1C_1 \qquad C_0C_1C_2$
wariant	$R_1C_1 >> R_0C_0:$
	$R_0 = \frac{C_2 - R_1 G_2 C_1}{R^2 C_1 C_2 C_1} = g(C_1);$
	$\mathbf{K}_{1} \subset \mathbf{g}_{m1} \mathbf{g}_{m2} \mathbf{g}_{m3}$
	$tg\delta_0 = \frac{1}{tg\delta_1} \frac{C_2 - K_1 G_2 C_1}{C_2} = h(C_1)$
$Z_0 - Y_1 - Y_2$	$\frac{g_{m1}g_{m2}g_{m2}}{g_{m1}g_{m2}g_{m2}} = \frac{G_1G_2C_0 + g_{m1}g_{m2}g_{m2}R_0C_0}{G_1G_2C_0 + g_{m1}g_{m2}g_{m2}R_0C_0}$
	$\frac{1}{G_1 C_0 C_2 + G_2 C_0 C_1} = \frac{1}{C_0 C_1 C_2}$
Wariant	$G_1 = 0$:
	$R_0 = \frac{C_2}{C_2};$
	G_2C_0
	$tg\delta_0 = \frac{\omega C_2}{C_2} = \frac{1}{ta\delta} = h(C_{2})$
	$\frac{G_2 - igv_2}{G_2}$
	C_1
	$\mathcal{R}_0 = \frac{1}{G_1 C_0};$
	$ta\delta = \frac{\omega C_1}{\omega C_1} = \frac{1}{\omega C_1} = h(C_1)$
	$ig \delta_0 - \frac{1}{G_1} - \frac{1}{ig \delta_1} - \frac{i(C_1)}{ig \delta_1}$

Wartość składowej czynnej R_0 lub G_0 lub współczynnika strat dielektrycznych $tg\delta_0=\omega R_0C_0$ oraz $tg\delta_0=G_0/\omega C_0$ wyznaczana jest z równości amplitud sygnału U_1 i U_2 , tj. warunku (2) (por. tabele 3 i 4).

Innymi słowy oznacza to, że w strukturach uogólnionego modelu przetworników będą występowały dodatkowe elementy nastawne ζ , pozwalające na uzyskanie relacji: $U_1 = U_2$. Zatem matematycznym warunkiem wyboru elementów nastawnych ζ , jest dla par funkcji:

$$\begin{array}{c} \omega = f(C_0) \\ R_0 \ \text{lub} \ G_0 = g(\zeta) \end{array} \right).$$
 (3a)

$$\omega = f(C_0) \Big|.$$

$$tg \delta_0 = h(\zeta) \Big|.$$
(3b)

Tabela 4. Zestawienie szczegółowych postaci warunku (2) dla przetwornika parametrów dwójników GC wg rys.1b

$Y_0 - Y_1 - Y_2$	$g_{m1}g_{m2}g_{m3}$
	$-\frac{1}{G_0C_1C_2+G_2C_0C_1+G_1C_0C_2} -$
	$=\frac{G_0G_1C_2+G_0G_2C_1+G_1G_2C_0}{G_1G_2G_1+G_1G_2G_0}$
	$C_0C_1C_2$
Wariant	$(G_1 = 0; G_2C_0 >> G_0C_2):$
	$G_0 = \frac{g_{m1}g_{m2}g_{m3}C_2}{G_2^2C_1} = g(C_2);$
	$tg\delta_0 = \frac{\omega C_2}{G_2} = \frac{1}{tg\delta_2} = h(C_2)$
	$(G_2 = 0; G_1C_0 >> G_0C_1):$
	$G_0 = \frac{g_{m1}g_{m2}g_{m3}C_1}{G_1^2 C_2} = g(C_1);$
	$g\delta_0 = \frac{\omega C_1}{G_1} = \frac{1}{tg\delta_1} = h(C_1)$
Y_0 - Z_1 - Y_2	$\frac{g_{m1}g_{m2}g_{m3}}{G_0C_1C_2 + G_2C_0C_1} = \frac{G_0G_2C_1 + g_{m1}g_{m2}g_{m3}R_1C_1}{C_0C_1C_2}$
Wariant	$G_2 = 0$:
	$G_0 = rac{C_0}{R_1 C_1};$
	$tg\delta_0 = \frac{1}{1} = \frac{1}{1} = h(C_1)$
V V 7	$\omega R_1 C_1 tg \delta_1$
$Y_0 - Y_1 - Z_2$	$\frac{g_{m1}g_{m2}g_{m3}}{G_0C_1C_2 + G_1C_0C_2} = \frac{G_0G_1C_2 + g_{m1}g_{m2}g_{m3}K_2C_2}{C_0C_1C_2}$
Wariant	$G_{\rm l} = 0$:
	$G_0 = \frac{C_0}{C_0};$
	R_2C_2
	$tg\delta_0 = \frac{1}{\omega R_2 C_2} = \frac{1}{tg\delta_2} = h(C_{2})$
Y_0 - Z_1 - Z_2	$\frac{1}{1} = \frac{R_1 C_1 + R_2 C_2}{R_1 C_1 + R_2 C_2}$
	$G_0C_1C_2 + R_1R_2C_1C_2g_{m1}g_{m2}g_{m3} \qquad C_0C_1C_2$
Wariant	$R_1 = 0$:
	$G_0 = \frac{C_0}{R_2 C_2};$
	$tg\delta_0 = \frac{1}{\omega R_2 C_2} = \frac{1}{tg\delta_2} = h(C_{2})$
	$R_2 = 0$:
	$G_0 = rac{C_0}{R_1 C_1};$
	$tg\delta_0 = \frac{1}{\omega R_1 C_1} = \frac{1}{tg\delta_1} = h(C_1)$

jest kryterium (i), by $\partial f/\partial \zeta = 0$, $\partial g/\partial C_0 = 0$ i $\partial h/\partial C_0 = 0$. Odpowiada to wyborowi nastaw uwidocznionych po prawej stronie kolumn tabel 3 i 4 (brak zaznaczenia symbolizuje niespełnienie tego kryterium). Możliwości pomiaru parametrów określonych układem (3a) nie posiadają natomiast układy przetworników oznaczone symbolami: Z_0 - Y_1 - Y_2 , Y_0 - Z_1 - Y_2 , Y_0 - Y_1 - Z_2 , $i Y_0$ - Z_1 - Z_2 .

Kryterium (ii) dotyczy z kolei wyboru układu o jak najmniejszej liczbie wielkości wpływowych występujących w równaniach przetwarzania (3a) -(3b). Wtedy to z uwagi na złożoność równań przetwarzania, porównywalne są układy Z_0 - Z_1 - Z_2 , Y_0 - Y_1 - Y_2 , natomiast zdecydowanie należy wykluczyć układy oznaczone symbolami: Z_0 - Y_1 - Z_2 oraz Z_0 - Z_1 - Y_2 . Trzecim kryterium (iii) jest maksymalizacja czułości przetwarzania przez przetwornik parametru C_0 , tj. $k \rightarrow \max$.

I tutaj (por. tablice 1 i 2) właściwości wszystkich układów są pod tym względem porównywalne.

4. WNIOSKI KOŃCOWE

Ważną zaletą przyjętej realizacji przetworników według rysunku 1a,b jest możliwość pomiaru w tym samym czasie 2 składowych impedancji pasywnego dwójnika typu RC,/GC postaci:{ $(R_0, C_0), (G_0, C_0), (C_0, tg\delta_0)$ } przy czym jeden z tych parametrów jest przetwarzany wprost na częstotliwość (pulsację ω – por. tablice 1 i 2), natomiast drugi parametr wyznaczany jest na podstawie warunku (2) przy stałości amplitud sygnałów sinusoidalnych U_1 lub U_2 .

Wtedy to koniecznym jest jednak wskazanie elementu nastawnego ζ (tu: C_1 lub C_2 – por. tablice 3 i 4).

Omawiane układy przetworników można przy tym łatwo zautomatyzować i przystosować np. do pomiarów różnicowych, wykorzystując zalety tego typu pomiaru [1,2].

Reasumując – optymalnymi przetwornikami do pomiaru składowych (R_0 , C_0), (G_0 , C_0) są układy Z_0 - Z_1 - Z_2 , Y_0 - Y_1 - Y_2 , natomiast do przetwarzania parametrów(C_0 , $tg\delta_0$) – odpowiednio – układy Y_0 - Z_1 - Y_2 , Y_0 - Y_1 - Z_2 , Y_0 - Z_1 - Z_2 . W tym ostatnim przypadku dodatkową zaletą jest mało krytyczny dobór nastaw wartości $tg\delta_{1,2} = 1/tg\delta_0$.

5. BIBLIOGRAFIA

- Szadkowski B.: Synteza metod pomiaru immitancji, Zeszyty Naukowe Politechniki Śląskiej, Elektryka, Nr 93 (802), Gliwice 1984.
- 2. Tumański S.: Principles of electrical measurement, CRC Press, Taylor & Francis Group, New York, London 2006.
- 3. Rybin Y. K.: Measuring signal generators, Springer International Publishing AG Switzerland, Zürich 2014.
- Ahmed M. T., Khan I. A., Minhaj N.: On transconductance – C quadrature oscillators, International Journal of Electronics, Issue 2, Vol. 83, 1997, s. 201-208.
- 5. Chaturvedi B., Maheshwari S.: Third order quadrature oscillator circuit with current and voltage outputs, ISRN Electronics, Article ID:385062, 2013, s. 1-8.
- 6. Pandey R. et. al.: OTRA based voltage mode third order quadrature oscillator, ISRN Electronics, Article ID:126471, 2014, s. 1-5.
- 7. Pandey N., Pandey R.: Approach for third order quadrature oscillator realisation, IET Circuits, Devices and Systems, Issue 3, Vol.9, 2015, s.161-171.
- 8. Topór-Kamiński L.: Wielozaciskowe wzmacniacze operacyjne w układach oscylacyjnych, Wydawnictwo Pomiary, Automatyka, Kontrola, Warszawa 2008.
- Topór-Kamiński L., Guzik J., Pilśniak A.: Struktury przetworników jednoczesnych zmian dwóch parametrów dwójników RC o wyjściu częstotliwościowym, Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki PG, Nr 54, Gdańsk 2017, s. 225-228.

GENERALIZED MODEL OF SIMULTANEOUS TWO PARAMETER CHANGES OF TWO-PORT RC / GC NETWORK CONVERTER WITH FREQUENCY OUTPUT

In the paper the generalized model of simultaneous new two parameter {(R;C), (C; $tg\delta = \omega RC$), (G;C); (C; $tg\delta = G/\omega C$)} changes (of two-port RC given in form $Z = R+1/j\omega C$ or GC network given in form $Y = G+j\omega C$) converter with frequency output is presented. The converter is based on third order quadrature oscillator (see Fig.1a,b) where one of the measuring two-port parameter (C) is converted into frequency ω , however second parameter changes (R, G, $tg\delta$) – suitably converted – to the growth or the fall of amplitude value U_1 or U_2 of generated signals. The advantages of proposed optimal converter realization variant circuits were indicated

Keywords: impedance component changes-to-frequency converter, quadrature oscillator, transconductance amplifier (OTA).