PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Self-preservation Effect of Gas Hydrates

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work was performed to improve the storage and transportation technology of gas hydrates in nonequilibrium conditions. At atmospheric pressure and positive ambient temperature, they gradually dissociate into gas and water. Simulation of the gas hydrate dissociation will determine optimal conditions for their transportation and storage, as well as minimize gas loss. Thermodynamic parameters of adiabatic processes of forced preservation of pre-cooled gas hydrate blocks with ice layer were determined theoretically and experimentally. Physical and mathematical models of these processes were proposed. The scientific novelty is in establishing quantitative characteristics that describe the gas hydrates thermophysical parameters thermophysical characteristics influence on the heat transfer processes intensity on the interphase surface under conditions of gas hydrates dissociation. Based on the results of experimental studies, approximation dependences for determining the temperature in the depths of a dissociating gas hydrate array have been obtained. Gas hydrates dissociation mathematical model is presented.
Rocznik
Tom
Strony
346--355
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
Bibliografia
  • Archer, D. (2007). Methane hydrate stability and anthropogenic climate change. Biogeosciences, 4, 521-544.
  • Boswell, R.; Collett, T.S. (2011). Collett Current perspectives on gas hydrate resources. Energy Environ. Sci., 4, 1045-1528.
  • Brown, T.D.; Taylor, C.E.; Bernardo, M.P. (2010). Rapid Gas Hydrate Formation Processes: Will They Work? Energies, 3, 1154-1175.
  • Chong, Z.R.; Yang, S.H.; Babu, P.; Linga, P.; Li, X.S. (2016). Review of natural gas hydrates as an energy resource: Prospects and challenges. Appl. Energy, 162, 1633-1652.
  • Ke, W.; Svartaas, T.M.; Chen, D. (2019). A review of gas hydrate nucleation theories and growth models. J. Nat.Gas Sci. Eng., 61, 169-196.
  • Kim, K.; Kang, H.; Kim, Y. (2015). Risk Assessment for Natural Gas Hydrate Carriers: A Hazard Identification (HAZID) study. Energies, 8, 3124-3164.
  • Kipyoung, K.; Youtaek, K.; Hokeun, K. (2014). Recent advances in natural gas hydrate carriers for gas transportation. JKOSME, 38, 589-601, DOI: 10.5916/jkosme.2014.38.5.589.
  • Koshlak, H., Pavlenko, A. (2019). Method of formation of thermophysical properties of porous materials. Rocznik Ochrona Srodowiska, 21(2), 1253-1262.
  • Pavlenko, A.M. (2020). Thermodynamic features of the intensive formation of hydrocarbon hydrates. Energies, 13, 3396; DOI: 10.3390/en13133396
  • Pavlenko, A., Koshlak, H. (2019). Heat and mass transfer during phase transitions in liquid mixtures. Rocznik Ochrona Srodowiska, 21(1), 234-249.
  • Pavlenko, A., Szkarowski, A., Janta-Lipińska, S. (2014). Research on burning of water black oil emulsions. Rocznik Ochrona Srodowiska, 16(1), 376-385.
  • Pavlenko, A., Usenko, B., Koshlak, A. (2014a). Analysis of thermal peculiarities of alloying with special properties. Metallurgical and Mining Industry, 6(2), 15-19.
  • Veluswamy, H.P.; Kumar, A.; Kumar, R.; Linga, P. (2017). An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application. Appl. Energy, 188, 190-199.
  • Vysniauskas, A.; Bishnoi, P.R. (1983). A kinetic study of methane hydrate formation. Chem. Eng. Sci., 38, 1061-1072.
  • Zhao, J.; Zhu, Z.; Song, Y.; Liu, W.; Zhang, Y.; Wang, D. (2015). Analysing the process of gas production for natural gas hydrate using depressurization. Appl. Energy, 142, 125-134, DOI: 10.1016/j.apenergy.2014.12.0714.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cec4d795-4a5a-46c2-a3f3-9121f7aa27fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.