PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Digital communication : optical vs. THz links

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a comprehensive look at the perspectives on the use of THz in digital communication systems. The publication aims to focus on arguments that justify a significant increase in the frequency of radio links and their integration with fibre-based networks. Comparison of THz links with their microwave and optical counterparts is discussed from basic physical limitations to technological constraints. Main attention is paid to the available channel capacity resulting from its bandwidth and signal-to-noise ratio. The short final discussion is about technology platforms that seem to be crucial to the availability of suitable THz sources. According to the author, the biggest advantage of using bands in the range of several hundred GHz for a digital data transmission is their use for mobile communication over short distances, as well as for broadband indoor links. However, these applications require a development of compact electronic THz sources with low noise and power reaching single watts. This is beyond the range of the most popular silicon-based technology platform, although a significant progress can be expected with the development of technologies based on wide bandgap semiconductors. Fibre optic connections remain the unquestioned leader in communication over long distances and permanent links.
Twórcy
  • Lukasiewicz Research Network, Institute of Electron Technology, 32/46 Lotnikow Ave., 02-668 Warsaw, Poland
Bibliografia
  • [1] Provisional Final Acts WRC-19 World Radiocommunication Conference 2019 (WRC-19). Available at https://www.itu.int/en/ ITU-R/conferences/wrc/2019/Documents/PFA-WRC19-E.pdf (Accessed 5th August 2020, see p. 60)
  • [2] Shannon, C. E. A Mathematical theory of communication. Bell Syst. Techn. J. 27, 379–423 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  • [3] Bjornson, E., Zetterberg, P., Bengtsson, M. & Ottersten, B. Capacity limits and multiplexing gains of MIMO channels with transceiver impairments. IEEE Commun. Lett. 17 (1), 91–94, (2013). https://doi.org/10.1109/LCOMM.2012.112012.122003
  • [4] Li, M.-J. & Hayashi, T. Advances in low-loss, large-area, and multicore fibres. in Optical Fibre Telecommunications VII, (ed. Willner, A.), 3–50, (Academic Press, 2019). https://doi.org/10.1016/B978-0-12-816502-7.00001-4
  • [5] Tamosiunaite, M., Tamosiunas, S., Zilinskas, M. & Valusis G. Atmospheric Attenuation of the Terahertz Wireless Networks. in Broadband Communications Networks - Recent Advances and Lessons from Practice, 143–156 (INTECH OPEN book, 2018). http://dx.doi.org/10.5772/intechopen.72205
  • [6] Ndjiongue, A. R., Ferreira, H. & Ngatched, T. Visible Light Communications (VLC) Technology. in Wiley Encyclopedia of Electrical and Electronics Engineering, 1–15 (Wiley Online Library, 2015). https://doi.org/10.1002/047134608X.W8267
  • [7] Li, X. et al. 1-Tb/s millimeter-wave signal wireless delivery at D-Band. Technol. Lightwave J. 37 (1), 96–204 (2019). https://doi.org/10.1109/JLT.2018.2871472
  • [8] Buchali, F. et al. Experimental demonstration of capacity increase and rate-adaptation by probabilistically shaped 64-QAM. in 2015 European Conferenceon Optical Communication (ECOC) (2015). https://doi.org/10.1109/ECOC.2015.7341688
  • [9] H2020 EPIC Project: Next Generation FEC for Tb/s and THz Systems Enabling Practical Wireless Tb/s Communications with Next Generation Channel Coding. Available at: https://mentor.ieee.org/802.15/dcn/18/15-18-0206-00-0thz-h2020-epic-project-next-generation-fec-for-tb-s-and-thz-systems.pdf. (Accessed 5th August 2020)
  • [10] Dahlgren R., Noise in fibre optic communication links. Technical Report, SV Photonics 2000. Available at: http://www.svphotonics.com/pub/pub029.pdf. (Accessed 5st August 2020)
  • [11] Tucker, R.S., Green optical communications-Part I: Energy Limitations in Transport. IEEE J. Sel. Top. Quantum Electron. 17 (2), 245–260 (2011). https://doi.org/10.1109/JSTQE.2010.2051216
  • [12] Hecht, J. Laser Links will link small satellites to Earth and each other. LaserFocusWorld (24 March 2020). Available at: https://www.laserfocusworld.com/lasers-sources/article/14104017/laser-links-will-link-small-satellites-to-earth-and-each-other. (Accessed 5th August 2020)
  • [13] Sizov, F. Terahertz radiation detectors: the state-of-the-art. Semicond. Sci. Technol. 33 (12), 123001, (2018). https://doi.org/10.1088/1361-6641/aae473
  • [14] Sizov, F. Detectors and sources for THz and IR, PDF eBook DRM Free. vol. 72 of MRS (edited by Materials Research Forum LLC, 2020). https://doi.org/10.21741/9781644900758
  • [15] Ma, Z. T. et al. Modulators for terahertz communication: the current state of the Art. Research 2019, 1–22 (2019). https://doi.org/10.34133/2019/6482975
  • [16] Friis, H. T. A Note on a Simple Transmission Formula. IEEE Proc. IRE 34 (5), 254–256 (1946). https://doi.org/10.1109/JRPROC.1946.234568
  • [17] Tripathy, P., Mukherjee M. & Pati, S. P. Prospect and Issues of Diamond based IMPATT Diode at MM-wave Frequency. 17th International Workshop on the Physics of Semiconductor Devices, 10-14 Dec. 2013 in Physics of Semiconductor Devices (eds: Jain, V. K., Verma, A.) 235–238 (Springer International Publishing, 2014). https://www.springer.com/gp/book/9783319030012
  • [18] Ahi, K. Review of GaN-based devices for terahertz operation. Opt. Eng. 56 (9), 090901 (2017). https://doi.org/10.1117/1.OE.56.9.090901
  • [19] Kasagi, K., Suzuki, S. & Asada M. Large-scale array of resonant-tunneling-diode terahertz oscillators for high output power at 1 THz. J. Appl. Phys. 125 (15), 151601 (2019). https://doi.org/10.1063/1.5051007
  • [20] Nishida Y. et al. Terahertz coherent receiver using a single resonant tunneling diode. Sci. Rep. 9, 18125 (2019). https://doi.org/10.1038/s41598-019-54627-8
  • [21] Chevalier, P. et al., SiGe BiCMOS current status and future trends in Europe. in IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS) 64–71 (2018). https://doi.org/10.1109/BCICTS.2018.8550963
  • [22] Hillger, P. et al., Toward Mobile Integrated Electronic Systems at THz Frequencies. J. Infrared Millim. Terahertz Waves 41, 846–869 (2020). https://dx.doi.org/10.1007/s10762-020-00699-x
  • [23] Basu, R.., Billa, L. R., Letizia, R. & Paoloni, C. Design of sub-THz traveling wave tubes for high data rate long range wireless links. Semicond. Sci. Technol. 33 (12), 124009, (2018). https://doi.org/10.1088/1361-6641/aae859
  • [24] Kutty, S. & Sen, D. Beamforming for millimeter-wave communica-tions: an inclusive survey. in IEEE Commun. Surveys Tuts. 18 (2), 949–973 (2016). https://dx.doi.org/10.1109/COMST.2015.2504600
  • [25] Ducournau, G. et al. Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection. IEEE Trans. Terahertz Sci. Technol. 4 (3), 328–337 (2014). https://doi.org/10.1109/TTHZ.2014.2309006
  • [26] Dhillon. S. S. et al. The 2017 terahertz science and technology roadmap. J. Phys. D 50 (4), 043001 (2017). https://dx.doi.org/10.1088/1361-6463/50/4/043001
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cebe1528-c21d-45db-81c2-95579020dc42
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.