PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Study on Modeling and Experiment of a Wave Energy Converter Using Mechanical Coupled with Hydraulic Power Take-Off

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article’s proposal refers to a new concept of wave energy converter (WEC), in which the power take-off (PTO) is combined with the mechanical and hydrostatic transmission. Here, the wave energy is absorbed by turning the two-way movement of an incident wave into the one-way rotation of a hydraulic pump which drives a high-pressure (HP) hydraulic circuit. Electricity is generated using a rotating generator which is driven by an HP hydraulic circuit. First, the coupled PTO mechanism is presented to describe the working principle of the proposed WEC. Next, a mathematical model of the buoy connects generator system is shown to analyze the equipment’s performance subjected regular waves. And then, by using the theory of linear potential wave, the hydrodynamic forces acting on the semi-submerged floating buoy and an analytical model of the mechanical transmission coupled with the hydraulic transmission are modeled to investigate the motion of the rotary generator. An experimental Setup is performed to verify the analytical model. Based on the validated model, a structural optimization is calculated to bring the system to resonance condition. Then, a dry test is implemented to analyze the system’s performance. Some optimum parameters are determined and applied to the analytical model, which sends the signal to drive the actuator. As a result, the absorbed efficiency is increased significantly.
Rocznik
Strony
12--24
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Faculty of Mechanical Engineering, HCMC University of Technology and Education (HCMUTE), 1 Vo Van Ngan Street, Linh Chieu Ward, Thu Duc City, Ho Chi Minh City, 71300, Vietnam
  • Faculty of Mechanical Engineering, HCMC University of Technology and Education (HCMUTE), 1 Vo Van Ngan Street, Linh Chieu Ward, Thu Duc City, Ho Chi Minh City, 71300, Vietnam
  • Faculty of Mechanical Engineering, HCMC University of Technology and Education (HCMUTE), 1 Vo Van Ngan Street, Linh Chieu Ward, Thu Duc City, Ho Chi Minh City, 71300, Vietnam
  • Faculty of Mechanical Engineering, HCMC University of Technology and Education (HCMUTE), 1 Vo Van Ngan Street, Linh Chieu Ward, Thu Duc City, Ho Chi Minh City, 71300, Vietnam
Bibliografia
  • 1. Guterres, A. Carbon Neutrality by 2050: the World’s most urgent mission. (United Nations Secretary General, 2020.) https://www.un.org/sg/en/content/sg/articles/2020-12-11/carbon-neutrality-2050-theworld%E2%80%99s-most-urgent-mission (2020). Accessed 10 Feb 2021
  • 2. Badran, A.A., Obeidat, F.A. 2022. Solar hot water heating and electricity generation using PV/T hybrid system. Journal of Ecological Engineering, 23(5), 196–206. https://doi.org/10.12911/22998993/146783
  • 3. Hassan, K.A. 2022. Generating electricity from soil using different sources of manure. Journal of Ecological Engineering, 23(8), 187–192. https://doi.org/10.12911/22998993/150721
  • 4. Rusu, E., Onea, F. 2018. A review of the technologies for wave energy extraction. Clean Energy, 2(1), 10–19.
  • 5. Guo, B., Ringwood J.V. 2021. A review of wave energy technology from a research and commercial perspective. Renewable Power Generation, IET. September 2021.
  • 6. Falnes, J. 2007. A review of wave-energy extraction. Marine Structures, 20, 185–201.
  • 7. Drew, B., Plummer, A.R., Sahinkaya, M.N. 2009. A review of wave energy converter technology.
  • 8. Anto´nio, F., de Falca˜o, O. 2010. Wave energy utilization: A review of the technologies. Renewable and Sustainable Energy Reviews, 14, 899–918.
  • 9. López, I., Andreu, J., Ceballos, S., de Alegría I.M., Kortabarria, I. 2013. Review of wave energy technologies and the necessary power-equipment. Renewable and Sustainable Energy Reviews, 27, 413–434.
  • 10. Lindroth, S., Leijon, M. 2015. Offshore wave power measurements – A review. Renewable and Sustainable Energy Reviews, 15, 4274–4285.
  • 11. European Marine Energy Centre (EMEC). Wave Devices. http://www.emec.org.uk/marine-energy/wave-devices/ (August 2017, date last accessed).
  • 12. Binh, P.C., Truong, D.Q., Ahn, K.K. 2012. A study on wave energy conversion using direct linear generator. Proc. of 12th International Conference on Control, Automation and Systems.
  • 13. Leijon, M., Bernhoff, H., Agren, O., et al. 2005. Multiphysics simulation of wave energy to electric energy conversion by permanent magnet linear generator. IEEE Trans. on Ener. Conv., 20(1), 219–224.
  • 14. Colli, V.D., Cancelliere, P., Marignetti, F, et al. 2006. A tubular-generator drive for wave energy conversion. IEEE Trans. on Ind. Elec., 53(4), 1152–1159.
  • 15. Binh, P.C., Nam, D.N.C., Ahn, K.K. 2015. Design and modeling of an innovative wave energy converter using dielectric electroactive polymers generator. International Journal of Precision Engineering and Manufacturing, 16(5), 945–955.
  • 16. Binh, P.C., Ahn, K.K. 2016. Performance optimization of dielectric electro active polymers in wave energy converter application. International Journal of Precision Engineering and Manufacturing, 17(9), 1175–1185.
  • 17. Ahn, K.K., Truong, D.Q., Tien, H.H., Yoon, J.I. 2011. An innovative design of wave energy converter, Renewable Energy, 1–9.
  • 18. Binh, P.C., Tri, N.M., Dung, D.T., Ahn, K.K., Kim, S.J., Koo, W. 2016. Analysis, design and experiment investigation of a novel wave energy converter. IET Generation, Transmission and Distribution, 10(2), 460–469.
  • 19. Tri, N.M., Binh, P.C., Ahn, K.K. 2018. Power take-of system based on continuously variable transmission confguration for wave energy converter. International Journal of Precision Engineering and Manufacturing-Green Technology, 2018, 5(1), 89–101.
  • 20. Dung, D.T., Binh, P.C., Ahn, K.K. 2019. Design and investigation of a novel point absorber on performance optimization mechanism for wave energy converter in heave mode. International Journal of Precision Engineering and Manufacturing-Green Technology, 6, 477–488.
  • 21. Dung, D.T., Tri, N.M., Binh, P.C., Ahn, K.K. 2019. Development of a wave energy converter with mechanical power take-of via supplementary inertia control. International Journal of Precision Engineering and Manufacturing-Green Technology, 6, 497–509.
  • 22. Dung, D.T., Binh, P.C., Ahn, K.K. 2019. Modeling and experimental investigation on performance of a wave energy converter with mechanical power take-of. International Journal of Precision Engineering and Manufacturing-Green Technology, 6, 751–768.
  • 23. Falcão de, O.A.F. 2007. Modelling and control of oscillating-body wave energy converters with hydraulic power take-off and gas accumulator. Ocean Engineering, 34(14–15), 2021–2032.
  • 24. Yang, L., Hals, J., Moan, T. 2010. Analysis of dynamic effects relevant for the wear damage in hydraulic machines for wave energy conversion. Ocean Engineering, 37(13), 1089–1102.
  • 25. Dung, D.T., Cuong D.T., Ahn, K.K. 2021. Experimental assessment of the power conversion of a wave energy converter using hydraulic power take-of mechanism. International Journal of Precision Engineering and Manufacturing-Green Technology, 8, 1515–1527.
  • 26. Thinh, D.H., Truong, D.Q., Tri, N.M, Binh, P.C., Dung, D.T, Seyoung, L., Hyung-Hyu P., Ahn K.K. 2017. Proposition and experiment of a sliding angle self-tuning wave energy converter. Ocean Engineering, 1–10.
  • 27. Falnes, J. 2002. Ocean waves and oscillating systems, linear interaction including wave-energy extraction. U.K.: Cambridge Univ.
  • 28. Armstrong, B., de Wit, C.C. 1995. Friction modelling and compensation. The control handbook (CRC Press, 1995).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ceb881dd-2234-4680-a4cc-0edb1469f072
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.