Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Quadcopter unmanned aerial vehicle is a multivariable, coupled, unstable, and underactuated system with inherent nonlinearity. It is gaining popularity in various applications and has been the subject of numerous research studies. However, modelling and controlling a quadcopter to follow a trajectory is a challenging issue for which there is no unique solution. This study proposes an optimal hybrid quadcopter control with MPC-based backstepping control for following a reference trajectory. The outer-loop controller (backstepping controller) regulates the quadcopter’s position, whereas the inner-loop controller (Model Predictive Control) regulates its attitude. The translational and rotational dynamics of the quadcopter are analyzed utilizing the Newton-Euler method. After that, the backstepping controller (BC) is created, which is a recurrent control method according to Lyapunov’s theory that utilizes a genetic algorithm (GA) to choose the controller parameters automatically. In order to apply a linear control technique in the presence of nonlinearities in the quadcopter dynamics, Linear Parameter Varying (LPV) Model Predictive Control (MPC) structure is developed. Simulation validated the dynamic performance of the proposed optimal hybrid MPC-based backstepping controller of the quadcopter in following a given reference trajectory. The simulations demonstrate the fact that using a command control input in trajectory tracking, the proposed control algorithm offers suitable tracking over the assigned position references with maximum appropriate tracking errors of 0.1 m for the X and Y positions and 0.15 m for the Z position.
Czasopismo
Rocznik
Tom
Strony
39--62
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wzory
Twórcy
autor
- Department of Mechatronic Engineering, Univeristy of Nigeria, Nsukka, Enugu State, Nigeria
autor
- Department of Electronicand Computer Engineering, University of Nigeria, Nsukka, Enugu State, Nigeria
autor
- Department of Electronicand Computer Engineering, University of Nigeria, Nsukka, Enugu State, Nigeria
autor
- Department of Electrical Engineering, Universityof Nigeria, Nsukka, Enugu State, Nigeria
autor
- Department of Electronicand Computer Engineering, University of Nigeria, Nsukka, Enugu State, Nigeria
autor
- Department of Mechatronic Engineering and Department of Agricultural and Bioresources Engineering, Univeristy of Nigeria, Nsukka, Enugu State, Nigeria
Bibliografia
- [1] A. Prach and E. Kayacan: An MPC-based position controller for a tilt-rotor tricopter VTOL UAV. Optimal Control. Application and Methods, 39(1), (2018), 343-356. DOI: 10.1002/oca.2350
- [2] M. Rinaldi, S. Primatesta and G. Guglieri: A Comparative study for control of quadrotor UAVs. Applied Sciences, 13(6), (2023), 3464. DOI: 10.3390/app13063464
- [3] J. Xin, J. Zhong, F. Yang, Y. Cui and J. Sheng: An improved genetic algorithm for path-planning of unmanned surface vehicle. Sensors, 19(11), (2019), 2640. DOI: 10.3390/s19112640
- [4] C. Alarcon and M. Jamett: Autonomous multirrotor design and simulation for search and rescue missions. 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA), (2018), 1-6. DOI: 10.1109/ICA-ACCA.2018.8609813
- [5] G. Ononiwu, O. Onojo, O. Ozioko and O. Nosiri: Quadcopter design for payload delivery. Journal of Computer and Communications, 4(10), (2016), 1-12. DOI: 10.4236/jcc.2016.410001
- [6] L.D.P. Pugliese, F. Guerriero and G. Macrina: Using drones for parcels delivery process. Procedia Manufacturing, 42, (2020), 488-497. DOI: 10.1016/j.promfg.2020.02.043
- [7] K. Gunaratne, A. Thibbotuwawa, A.E. Vasegaard, P. Nielsen and H.N. Perera: Unmanned aerial vehicle adaptation to facilitate healthcare supply chains in low-income countries. Drones, 6(11), (2022), 321. DOI: 10.3390/drones6110321
- [8] L. Yang, B. Li, W. Li, H. Brand, B. Jiang and J. Xiao: Concrete defects inspection and 3D mapping using CityFlyer quadrotor robot. IEEE/CAA Journal of Automatica Sinica, 7(4), (2020), 991-1002. DOI: 10.1109/JAS.2020.1003234
- [9] W. Budiharto, E. Irwansyah, J.S. Suroso, A. Chowanda, H. Ngarianto and A.A.S. Gunawan: Mapping and 3D modelling using quadrotor drone and GIS software. J. Big Data, 8(1), (2021), 48. DOI: 10.1186/s40537-021-00436-8
- [10] M. Idrissi, M. Salami and F. Annaz: A review of quadrotor unmanned aerial vehicles: Applications, architectural design and control algorithms. Journal of Intelligent and Robotic Systems, 104(2), (2022), 22. DOI: 10.1007/s10846-021-01527-7
- [11] M.F. Aslan, A. Durdu, K. Sabanci, E. Ropelewska and S.S. Gültekin: A comprehensive survey of the recent studies with UAV for precision agriculture in open fields and greenhouses. Applied Sciences, 12(3), (2022), 1047. DOI: 10.3390/app12031047
- [12] L. Rodríguez-Guerrero, A. Benítez-Morales, O.-J. Santos-Sánchez, O. García-Pérez, H. Romero-Trejo, M.-O. Ordaz-Oliver and J.-P. Ordaz-Oliver: Robust back-stepping control applied to UAVs for pest recognition in maize crops. Applied Sciences, 12(18), (2022), 9075. DOI: 10.3390/app12189075
- [13] R. Grymin, W. Bożejko, Z. Chaczko, J. Pempera and M. Wodecki: Algorithm for solving the Discrete-Continuous Inspection Problem. Archives of Control Sciences, 30(4), (2020), 653-666. DOI: 10.24425/acs.2020.135845
- [14] R. Roy, M. Islam, N. Sadman, M.A.P. Mahmud, K.D. Gupta and M.M. Ahsan: A review on comparative remarks, performance evaluation and improvement strategies of quadrotor controllers. Technologies, 9(2), (2021), 37. DOI: 10.3390/technologies9020037
- [15] M.N. Shauqee, P. Rajendran and N.M. Suhadis: Quadrotor controller design techniques and applications review. INCAS Bulletin, 13(3), (2021), 179-194. DOI: 10.13111/2066-8201.2021.13.3.15
- [16] A. Zulu and S. John: A review of control algorithms for autonomous quadrotors. Open Journal of Applied Sciences, 4(14), (2014), 547-556, DOI: 10.4236/ojapps.2014.414053
- [17] H. Shraim, A. Awada and R. Youness: A survey on quadrotors: Configurations, modeling and identification, control, collision avoidance, fault diagnosis and tolerant control. IEEE Aerospace and Electronic Systems Magazine, 33(7), (2018), 14-33. DOI: 10.1109/MAES.2018.160246
- [18] M.E. Antonio-Toledo, E.N. Sanchez, A.Y. Alanis, J.A. Flórez and M.A. Perez-Cisneros: Real-time integral backstepping with sliding mode control for a quadrotor UAV. IFAC-PapersOnLine, 51(13), (2018), 549-554. DOI: 10.1016/j.ifacol.2018.07.337
- [19] M. Zare, F. Pazooki and S. E. Haghighi: Quadrotor UAV position and altitude tracking using an optimized fuzzy-sliding mode control. IETE Journal of Research, 68(6), (2022), 44064420. DOI: 10.1080/03772063.2020.1793694
- [20] A. Moeini, A.F. Lynch and Q. Zhao: A backstepping disturbance observer control for multirotor UAVs: theory and experiment. International Journal of Control, 95(9), (2022), 2364-2378. DOI: 10.1080/00207179.2021.1912393
- [21] M. Schwenzer, M. Ay, T. Bergs and D. Abel: Review on model predictive control: an engineering perspective. International Journal of Advanced Manufacturing Technology, 117(5), (2021), 1327-1349. DOI: 10.1007/s00170-021-07682-3
- [22] Salmah, Sutrisno, E. Joelianto, A. Budiyono, I.E. Wijayanti and N.Y. Megawati: Model predictive control for obstacle avoidance as hybrid systems of small scale helicopter. 2013 3rd International Conference on Instrumentation Control and Automation (ICA), (2013), 127-132. DOI: 10.1109/ICA.2013.6734058
- [23] R. Benotsmane and J. Vásárhelyi: Towards optimization of energy consumption of Tello Quad-Rotor with MPC model implementation. Energies, 15(23), (2022), 9207. DOI: 10.3390/en15239207
- [24] T. Manzoor, Y. Xia, D.H. Zhai and D. Ma: Trajectory tracking control of a VTOL unmanned aerial vehicle using offset-free tracking MPC. Chinese Journal of Aeronautics, 33(7), (2020), 2024-2042. DOi: 10.1016/j.cja.2020.03.003
- [25] Z.A. Ali: Altitude controlling and trajectory tracking of quadrotor UAV by using Model Predictive Control. SF Journal of Aviation and Aeronautical Science, 1(1), (2018), 1009.
- [26] K. Alexis, G. Nikolakopoulos and A. Tzes: On trajectory tracking model predictive control of an unmanned quadrotor helicopter subject to aerodynamic disturbances. Asian Journal of Control, 16(1), (2014), 209-224. DOI: 10.1002/asjc.587
- [27] A.V. Ojha and A. Khandelwal: Control of non-linear system using backstepping. International Journal of Research in Engineering and Technology, 4(5), (2015), 606-610. DOI: 10.15623/IJRET.2015.0405111
- [28] M. Bouchoucha, M. Tadjine, A. Tayebi, P. Müllhaupt and S. Bouabdallah: Robust nonlinear PI for attitude stabilization of a four-rotor mini-aircraft: From theory to experiment. Archives of Control Sciences, 18(1), (2008), 99-120.
- [29] Z. Shen, F. Li, X. Cao and C. Guo: Prescribed performance dynamic surface control for trajectory tracking of quadrotor UAV with uncertainties and input constraints. International Journal of Control, 94(11), (2021), 2945-2955. DOI: 10.1080/00207179.2020.1743366
- [30] S. Zeghlache, D. Saigaa, K. Kara, A. Harrag and A. Bouguerra: Backstepping sliding mode controller improved with fuzzy logic: Application to the quadrotor helicopter. Archives of Control Sciences, 22(3), (2012), 315-34.
- [31] M. Raghappriya and S. Kanthalakshmi: Pitch and yaw motion control of 2 DoF helicopter subjected to faults using sliding-mode control. Archives of Control Sciences, 32(2), (2022), 359-381. DOI: 10.24425/acs.2022.141716
- [32] A. Joukhadar, M. AlChehabi, C. Stöger and A. Müller: Trajectory tracking control of a quadcopter UAV using nonlinear control. Mechanisms and Machine Science, 58, (2019), 271-285. DOI: 10.1007/978-3-319-89911-4_20
- [33] H. Wang, N. Li, Y. Wang and B. Su: Backstepping sliding mode trajectory tracking via extended state observer for quadrotors with wind disturbance. International Journal of Contro, l Automation and Systems, 19(10), (2021), 3273-3284. DOI: 10.1007/s12555-020-0673-5
- [34] A. Taame, I. Lachkar and A. Abouloifa: Modeling of an unmanned aerial vehicle and trajectory tracking control using backstepping approach. IFAC-PapersOnLine, 55(12), (2022), 276-281. DOI: 10.1016/j.ifacol.2022.07.324
- [35] Y. Mehmood, J. Aslam, N. Ullah, M.S. Chowdhury, K. Techato and A.N. Alzaed: Adaptive robust trajectory tracking control of multiple quad-rotor UAVs with parametric uncertainties and disturbances. Sensors, 21(7), (2021), 2401. DOI: 10.3390/s21072401
- [36] N. Xuan-Mung and S.K. Hong: Robust backstepping trajectory tracking control of a quadrotor with input saturation via extended state observer. Applied Sciences, 9(23), (2019), 5184. DOI: 10.3390/app9235184
- [37] A.P. Cohen, S.A. Shaheen and E.M. Farrar: Urban air mobility: History, ecosystem, market potential, and challenges. IEEE Transactions on Intelligent Transportation Systems, 22(9), (2021), 6074-6087. DOI: 10.1109/TITS.2021.3082767
- [38] H. Nawaz, H.M. Ali and S.R. Massan: Applications of unmanned aerial vehicles: A review. 3C Tecnología_Glosas de innovación aplicadas a la pyme, (2019), 85-105. DOI: 10.17993/3ctecno.2019.specialissue3.85-105
- [39] J.P. Škrinjar, P. Škorput and M. Furdić: Application of unmanned aerial vehicles in logistic processes. Lecture Notes in Networks and Systems, 42, (2019), 359-366. DOI: 10.1007/978-3-319-90893-9_43
- [40] A. Abdulkareem, V. Oguntosin, O.M. Popoola and A.A. Idowu: Modeling and nonlinear control of a quadcopter for stabilization and trajectory tracking. Journal of Engineering 2022, 1-19. DOI: 10.1155/2022/2449901
- [41] S. Abdelhay and A. Zakriti: Modeling of a quadcopter trajectory tracking system using PID controller. Procedia Manufacturing, 32, (2019), 564-571. DOI: 10.1016/j.promfg.2019.02.253
- [42] M.A. Basri and A. Noordin: Optimal backstepping control of quadrotor UAV using gravitational search optimization algorithm. Bulletin of Electrical Engineering and Informatics, 9(5), (2020), 1819-1826. DOI: 10.11591/eei.v9i5.2159
- [43] O. Rodríguez-Abreo, J.M. Garcia-Guendulain, R. Hernández-Alvarado, A.F. Rangel and C. Fuentes-Silva: Genetic algorithm-based tuning of backstepping controller for a quadrotor-type unmanned aerial vehicle. Electronics, 9(10), (2020), 1-24. DOI: 10.3390/electronics9101735
- [44] A. Joukhadar, M. Alchehabi and A. Jejeh: Advanced UAVs nonlinear control systems and applications. Unmanned Robotic Systems and Applications, (2020). DOI: 10.5772/intechopen.86353
- [45] Y. Wang, A. Ramirez-Jaime, F. Xu and V. Puig: Nonlinear Model Predictive Control with constraint satisfactions for a quadcopter. Journal of Physics: Conference Series, 783, (2017), 012025. DOI: 10.1088/1742-6596/783/1/012025
- [46] D. Bicego, J. Mazzetto, R. Carli, M. Farina and A. Franchi: Nonlinear Model Predictive Control with enhanced actuator model for multi-rotor aerial vehicles with generic designs. Journal of Intelligent and Robotic Systems, 100(3), (2020), 1213-1247. DOI: 10.1007/s10846-020-01250-9
- [47] H.S. Abbas, R. Tóth, M. Petreczky, N. Meskin, J. Mohammadpour Velni and P.J.W. Koelewijn: LPV modeling of nonlinear systems: A multi-path feedback linearization approach. International Journal of Robust and Nonlinear Control, 31(18), (2021), 9436-9465. DOI: 10.1002/rnc.5799
- [48] T. M. Vu, R. Moezzi, J. Cyrus and J. Hlava: Model Predictive Control for autonomous driving vehicles. Electronics, 10(21), (2021). DOI: 10.3390/electronics10212593
- [49] R. Coban: Adaptive backstepping sliding mode control with tuning functions for nonlinear uncertain systems. International Journal of Systems Science, 50(8), (2019), 1517-1529. DOI: 10.1080/00207721.2019.1615571
- [50] S. Katoch, S.S. Chauhan and V. Kumar: A review on genetic algorithm: Past, present, and future. Multimedia Tools and Applications, 80(5), (2021), 8091-8126. DOI: 10.1007/s11042-020-10139-6
Uwagi
The authors of this paper acknowledge Nigeria Tertiary Education Trust Fund (TETFUND) for funding this work as part of the 2020 TETFUND National Research Fund grant titled “Development of Multipurpose Drone and Machine Vision System for Optimal Farmland Selection/Mapping, Crop Monitoring, and Weed Management” with grant number: TETF/ES/DR&D-CE/NRF2020/SETI/88/VOL.1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cea9240c-7072-478e-88a1-78dc566fb621