PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Study on photocatalytic degradation and antibacterial properties of TiO2/CS composite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Capparis spinosa (CS) was extracted by the soxhlet extraction method using ethanol as the extractant. The TiO2/CS composite was synthesized by the in situ solvothermal method with CS extract as a dopant. The morphology, crystal structure, and optical properties of TiO2/CS were characterized by SEM, TEM, XRD, UV-Vis and FT-IR spectroscopy. The experimental results showed that TiO2/CS exhibited excellent photoresponse performance, generated active free radicals, and achieved photocatalytic degradation of organic pollutants. Furthermore, TiO2/CS served as antibacterial agents to evaluate their antibacterial properties against Escherichia coli (E. coli) at different concentrations. The results showed that TiO2/CS possessed excellent antibacterial performance and produced a significant antibacterial ring, with antibacterial rate of about 100% after being diluted 100 and 500 times, respectively. The test results indicated that TiO2/CS has great application potential in the field of antibacterial activity and photocatalytic degradation, owing to its advantages of being natural, environmentally friendly, and economical.
Czasopismo
Rocznik
Strony
41--45
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wz.
Twórcy
autor
  • College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, P. R. China
  • College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, P. R. China
autor
  • College of Chemistry and Pharmaceutical Engineering, Huanghuai University Zhumadian, P. R. China
autor
  • College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, P. R. China
autor
  • College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, P. R. China
Bibliografia
  • 1. Sun, Y., Yang, T. & Wang, C. Capparis spinosa L. (2023). Capparis spinosa L. as a potential source of nutrition and its health benefits in foods: A comprehensive review of its phytochemistry, bioactivities, safety, and application. Food Chem. 409, 135258. DOI:10.1016/j.foodchem.2022.135258.
  • 2. El-Subeyhi, M., Hamid, L. L. & Gayadh, E. W. (2024). A comprehensive review of its phytochemistry, bioactivities, safety, and application. Indian J. Microbiol. 64 (2), 548–557. DOI:10.1007/s12088-024-01190-0.
  • 3. Benakashani, F., Allafchian, A. R. & Jalali, S. A .H. (2016). Biosynthesis of silver nanoparticles using capparis spinosa L. leaf extract and their antibacterial activity. Karbala Int. J. Mod. Sci. 2 (4), 251–258. DOI:10.1016/j.kijoms.2016.08.004.
  • 4. Mansour, R. B., Jilani, I. B. H. & Bouaziz, M. (2016). Phenolic contents and antioxidant activity of ethanolic extract of Capparis spinosa. Cytotechnology 68, 135–142. DOI:10.1007/s10616-014-9764-6.
  • 5. Eid, A. M., Hawash, M. & Abualhasan, M. (2023). Exploring the potent anticancer, antimicrobial, and anti-Inflammatory effects of capparis spinosa oil na noemulgel. Coatings 13 (8), 1441. DOI:10.3390/coatings13081441.
  • 6. Neamah, S. A., Falih, I. Q. & Albukhaty, S. (2024). Phytochemical characteristic analysis and biological activity for capparis spinosa L. fruit extract. Rafidain J. Sci. 33 (1), 68–77. DOI:10.1021/acsomega.3c08314.
  • 7. Xu, Q. & Liu, Z. (2023). Studies on photocatalytic degradation for organic pollutants by TiO2/Au composite and its antibacterial properties. Theor. Found. Chem. Eng. 57 (6), 1610-1617. DOI: 10.1134/S0040579523330114.
  • 8. Tang, X., Abdiryim, T. & Jamal, R. (2024). Pyro-phototronic effect enhanced the performance of TiO2 NRs/BiOCl//PEDOS heterojunction for a UV photodetector. Chem. Eng. J. 488, 150940. DOI: 10.1016/j.cej.2024.150940.
  • 9. Aslam, M., Abdullah, A. Z. & Rafatullah M. (2022). Abelmoschus esculentus (Okra) seed extract for stabilization of the biosynthesized TiO2 photocatalyst used for degradation of stable organic substance in water. Environ. Sci. Pollut. 29 (27), 41053–41064. DOI: 10.1007/s11356-021-18066-1.
  • 10. Low, J., Zhang, L. & Tong, T. (2018). TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J. Catal. 361, 255–266. DOI: 10.1016/j.jcat.2018.03.009.
  • 11. Li, J., Liu, X. & Zhao, G. (2023). Piezoelectric materials and techniques for environmental pollution remediation. Sci. Total Environ. 869, 161767. DOI:10.1016/j.scitotenv.2023.161767.
  • 12. Wu M., Zhang M. & Shen L. (2023). High propensity of membrane fouling and the underlying mechanisms in a membrane bioreactor during occurrence of sludge bulking. Water Res. 229, 119456. DOI: 10.1016/j.watres.2022.119456.
  • 13. Wu, Q., Huang, J. Y. & Cao, R. (2022). Thermo-, electro-, and photocatalytic CO2 conversion to value-added products over porous metal/covalent organic frameworks. Acc. Chem. Res. 55 (20), 2978–2997. DOI: 10.1021/acs.accounts.2c00326.
  • 14. GB 18466-2005. Discharge standard of water pollutants for medical organization. Beijing China, China Environmental Science Press, 2005.
  • 15. Sawal, M. H., Jalil, A. A. & Khusnun, N. F. (2023). A review of recent modification strategies of TiO2-based photoanodes for efficient photoelectrochemical water splitting performance. Electrochim. Acta 143142. DOI: 10.1016/j.electacta.2023.143142.
  • 16. Sandhu, S., Kaur, M. & Sharma, N. (2022). Tailoring the exposed facets of anatase titania and probing their correlation with photocatalytic activity-an experimental and statistical study. Catal. Sci. Technol. 12, 6717. DOI:10.1039/D2CY00788F.
  • 17. Zhang, Y., Lei, L. & Plank, J. (2023). Boosting the performance of low-carbon alkali activated slag with APEG PCEs: a comparison with ordinary Portland cement. J. Sustain. Cem. 12 (11), 1347-1359. DOI:10.1080/21650373.2023.2219253.
  • 18. Govindappa, M., Vishaka, A. & Akshatha, B. S. (2023). An endophytic fungus, Penicillium simplicissimum conjugated with C60 fullerene for its potential antimitotic, anti-inflammatory, anticancer and photodegradation activities. Environ. Technol. 44 (6), 817–831. DOI: 10.1080/09593330.2021.1985621.
  • 19. Tahir, N., Zahid, M. & Jillani, A. (2023). Impact of alternate Mn doping in ternary nanocomposites on their structural, optical and antimicrobial properties: comparative analysis of photocatalytic degradation and antibacterial activity. J. Environ. Manage. 337, 117706. DOI: 10.1016/j.jenvman.2023.117706.
  • 20. Wang, L., Xin, M., Li, M., Liu, W. & Mao, Y. (2023). Effect of the structure of chitosan quaternary phosphonium salt and chitosan quaternary ammonium salt on the antibacterial and antibiofilm activity. Int. J. Biol. Macromol., 242, 124877. DOI: 10.1016/j.ijbiomac.2023.124877.
  • 21. Vadakkan, K., Rumjit, N. P., Ngangbam, A. K., Vijayanand, S. & Nedumpillil, N. K. (2024). Novel advancements in the sustainable green synthesis approach of silver nanoparticles (AgNPs) for antibacterial therapeutic applications. Coord. Chem. Rev., 499, 215528. DOI: 10.1016/j.ccr.2023.215528.
  • 22. Xu, Q., Wang, Y. & Chi, M. (2020) Porous polymer-titanium dioxide/copper composite with improved photocatalytic activity toward degradation of organic pollutants in wastewater: fabrication and characterization as well as photocatalytic activity evaluation. Catalysts 10 (3), 310. DOI: 10.3390/catal10030310.
  • 23. Liu, Z., Yin, H. & Liu, H. (2024). Antibacterial and photocatalytic degradation properties of TiO2-based composite. Anal. Chem. 104 (14), 3295–3302. DOI: 10.1080/03067319.2022.2081080.
  • 24. Sabir, A., Sherazi, T. A. & Xu, Q. (2021). Porous polymer supported Ag-TiO2 as green photocatalyst for degradation of methyl orange. Surf. Interfaces 26, 101318. DOI: 10.1016/j. surfin.2021.101318.
  • 25. Abuzeyad, O. H., El-Khawaga, A. M. & Tantawy, H. (2023). An evaluation of the improved catalytic performance of rGO/GO-hybrid-nanomaterials in photocatalytic degradation and antibacterial activity processes for wastewater treatment: A review. J. Mol. Struct. 1288, 135787. DOI: 10.1016/j. molstruc.2023.135787.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cea72245-6571-4fa2-af58-50c932cd0495
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.