PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Magnetothermoelastic vibrations on a viscoelastic microbeam subjected to a laser heat source

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The linear theory of viscoelasticity remains an important field of research like most solids and polymer materials when exposed to a vicious dynamic loading effect. This article introduces a new model for describing the behavior of thermoviscoelastic microbeams considering the effects of temperature change and the longitudinal magnetic field. The governing equations in this model are derived based on the Euler–Bernoulli beam theory, Kelvin–Voigt model of viscosity, the generalized thermoelasticity, and the classical Maxwell equations. The two ends of the microbeam are clamped and subjected to the influence of a laser pulse with a temporal intensity profile. The analytical solutions to the physical fields are evaluated using the Laplace transform and its inversion transforms are performed numerically. The thermo-viscoelastic responses of the microbeam are calculated numerically and investigated graphically. The effect of different parameters such as viscosity, laser intensity, and the magnitude of the magnetic field are studied in detail.
Rocznik
Strony
3--26
Opis fizyczny
Bibliogr. 62 poz., rys. kolor.
Twórcy
  • Department of Mathematics, College of Science and Arts, Jouf University, Al-Qurayyat, Saudi Arabia
  • Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
  • Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
Bibliografia
  • 1. F.O. Olsen, L. Alting, Cutting front formation in laser cutting CIRP annals, Manufacturing Technology, 38, 1, 215–218, 1989.
  • 2. P. Schaaf, Laser nitriding of metals, Progress in Materials Science, 47, 1–161, 2002.
  • 3. A.K. Dubey, V. Yadava, Laser beam machining-a review, International Journal of Machine Tools and Manufacture, 48, 6, 609–628, 2008.
  • 4. M.I. Othman, A.E. Abouelregal, The effect of pulsed laser radiation on a thermoviscoelastic semi-infinite solid under two-temperature theory, Archives of Thermodynamics, 38, 3, 77–99, 2017.
  • 5. D.W. Tang, N. Araki, The wave characteristics of thermal conduction in metallic films irradiated by ultra-short laser pulses, Journal of Physics D: Applied Physics, 29, 2527–2533, 1996.
  • 6. D.Y. Tzou, Macro- to Micro-Scale Heat Transfer: The Lagging Behavior, Taylor & Francis, Bristol, 1997.
  • 7. D. Joseph, L. Preziosi, Heat waves, Reviews of Modern Physics, 61, 1, 41–73, 1989.
  • 8. M.N. Ozisik, D.Y. Tzou, On the wave theory in heat-conduction, Journal of Heat Transfer ASME, 116, 3, 526–535, 1994.
  • 9. A.M. Zenkour, A.E. Abouelregal, The effect of two temperatures on a functionally graded nanobeam induced by a sinusoidal pulse heating, Structural Engineering and Mechanics, 51, 199–214, 2014.
  • 10. A.M. Zenkour, A.E. Abouelregal, Effect of harmonically varying heat on FG nanobeams in the context of a nonlocal two-temperature thermoelasticity theory, European Journal of Computational Mechanics, 23, 1–14, 2014.
  • 11. A.M. Zenkour, A.E.Abouelregal, K.A. Alnefaie, N.H. Abu-Hamdeh, E.A. Aifantis, Refined nonlocal thermoelasticity theory for the vibration of nanobeams induced by ramp-type heating, Applied Mathematics and Computation, 248, 169–183, 2014.
  • 12. A.M. Zenkour, A.E. Abouelregal, Vibration of FG nanobeams induced by sinusoidal pulse heating via a nonlocal thermoelastic model, Acta Mechanica, 225, 12, 3409–3421, 2014.
  • 13. A.M. Zenkour, A.E. Abouelregal, Nonlocal thermoelastic nanobeam subjected to a sinusoidal pulse heating and temperature-dependent physical properties, Microsystem Technologies, 21, 8, 1767–1776, 2015.
  • 14. D. Royer, Mixed matrix formulation for the analysis of laser-generated acoustic waves by a thermoelastic line source, Ultrasonics, 39, 345–354, 2001.
  • 15. X. Wang, X. Xu, Thermoelastic wave induced by pulsed laser heating, Applied Physics A, 73, 107–114, 2001.
  • 16. A.M. Zenkour, Refined two-temperature multi-phase-lags theory for thermomechanical response of microbeams using the modified couple stress analysis, Acta Mechanica, 229, 9, 3671–3692, 2018.
  • 17. M.N.M. Allam, A.E. Abouelregal, The thermoelastic waves induced by pulsed laser and varying heat of inhomogeneous microscale beam resonators, Journal of Thermal Stresses, 37, 4, 455–470, 2014.
  • 18. A.K. Soh, Y. Sun, F. Daining, Vibration of microscale beam induced by laser pulse, Journal of Sound and Vibration, 311, 1–2, 243–253, 2008.
  • 19. Y. Sun, F. Daining, M. Saka, A.K. Soh, Laser-induced vibrations of micro-beams under different boundary conditions, International Journal of Solids and Structures, 45, 7–8, 1993–2013, 2008.
  • 20. R. Kumar, Response of thermoelastic beam due to thermal source in modified couple stress theory, Computational Methods in Science and Technology, 22, 2, 87–93, 2016.
  • 21. R. Kumar, S. Devi, Eigenvalue approach to nanobeam in modified couple stress thermoelastic with three-phase-lag model induced by ramp type heating, Journal of Theoretical and Applied Mechanics, 55, 3, 1067–1079, 2017.
  • 22. A. Sur, S. Mondal, M. Kanoria, Memory response in the vibration of a micro-scale beam due to time-dependent thermal loading, Mechanics Based Design of Structures and Machines, doi: 10.1080/15397734.2020.1745078, 2020.
  • 23. A. Sur, Wave propagation analysis of porous asphalts on account of memory responses, Mechanics Based Design of Structures and Machines, doi: 10.1080/15397734.2020.1712553, 2020.
  • 24. S. Mondal, M. Kanoria, Thermoelastic solutions for thermal distributions moving over thin slim rod under memory-dependent three-phase lag magneto-thermoelasticity, Mechanics Based Design of Structures and Machines, 48, 3, 277–298, 2020.
  • 25. A. Sur, M. Kanoria, Field equations and corresponding memory responses for a fiber reinforced functionally graded due to heat source, Mechanics Based Design of Structures and Machines, doi: 10.1080/15397734.2019.1693897, 2019.
  • 26. S. Mondal, A. Sur, M. Kanoria, Transient heating within skin tissue due to time dependent thermal therapy in the context of memory dependent heat transport law, Mechanics Based Design of Structures and Machines, doi: 10.1080/15397734.2019.1686992, 2019.
  • 27. A.E. Abouelregal, M.A. Elhagary, A. Soleiman, K.M. Khalil, Generalized thermoelastic-diffusion model with higher-order fractional time-derivatives and fourphase-lags, Mechanics Based Design of Structures and Machines, doi: 10.1080/15397734.2020.1730189, 2020.
  • 28. A.C. Eringen, Nonlocal polar elastic continua, International Journal of Engineering Science, 10, 1–16, 1972.
  • 29. M.E. Gurtin, J. Weissmüller, F. Larché, A general theory of curved deformable interfaces in solids at equilibrium, Philosophical Magazine, 78, 5, 1093–1109, 1998.
  • 30. E.C. Aifantis, Strain gradient interpretation of size effects, International Journal of Fracture, 95, 1–4, 299–314, 1999.
  • 31. A.C. Eringen, Theory of micropolar plates, Journal of Applied Mathematics and Physics, 18, 1, 12–30, 1967.
  • 32. R.A. Toupin, Elastic materials with couple-stresses, Archive for Rational Mechanics and Analysis, 11, 385–414, 1962.
  • 33. R.D. Mindlin, H.F. Tiersten, Effects of couple-stresses in linear elasticity, Archive for Rational Mechanics and Analysis, 11, 1, 415–448, 1962.
  • 34. A. Zakria A. E. Abouelregal, Thermoelastic response of microbeams under a magnetic field rested on two-parameter viscoelastic foundation, Journal of Computational Applied Mechanics, 51, 2, 332–339, 2020.
  • 35. J. Chen, E. Pan, H. Chen, Wave propagation in magneto-electro-elastic multilayered plates, International Journal of Solids and Structures, 44, 1073–1085, 2007.
  • 36. Y. Hong, L. Wang, Stability and nonplanar buckling analysis of a current-carrying mircowire in three-dimensional magnetic field, Microsystem Technologies, 25, 4053–4066, 2019.
  • 37. I.M. Ward, J. Sweeney, The mechanical properties of polymers: general considerations, [in:] Mechanical Properties of Solid Polymers, 2nd ed., Wiley, Hoboken, NJ, USA, 2013.
  • 38. K.C. Chang, T.T. Soong, S.-T. Oh, M.L. Lai, Effect of Ambient temperature on viscoelastically damped structure, Journal of Structural Engineering, 118, 7, 1955–1973, 1992.
  • 39. M.K. Habibi, L.H. Tam, D. Lau, L. Yang, Viscoelastic damping behavior of structural bamboo material and its microstructural origins, Mechanic of Materials, 97, 184–198, 2016.
  • 40. H.H. Hilton, S.B. Dong, An Analogy for Anisotropic, Nonhomogeneous, Linear Viscoelasticity Including Thermal Stresses, Development in Mechanics, Pergamon Press, New York, 1964.
  • 41. M.H. Ghayesh, Viscoelastic dynamics of axially FG microbeams, International Journal of Engineering Science, 135, 75–85, 2019.
  • 42. A.E. Abouelregal, Thermoelastic fractional derivative model for exciting viscoelastic microbeam resting on Winkler foundation, Journal of Vibration and Control, doi: 10.1177/1077546320956528, 2020.
  • 43. M.H. Ghayesh, Dynamics of functionally graded viscoelastic microbeams, International Journal of Engineering Science, 124, 115–131; doi: 10.1016/j.ijengsci.2017.11.004, 2018.
  • 44. A.E. Abouelregal, H. Ahmad, Thermodynamic modeling of viscoelastic thin rotating microbeam based on non-Fourier heat conduction, Applied Mathematical Modelling, 91, 973–988, 2021.
  • 45. B.A. Boley, Approximate analyses of thermally induced vibrations of beams and plates, Journal of Applied Mechanics, 39, 212–216, 1972.
  • 46. J.C. Mishra, S.C. Samanta, A.K. Chakrabarty, Magneto-thermo-mechanical interaction in an aeolotropic viscoelastic cylinder permeated by magnetic field subjected to a periodic loading, International Journal of Engineering Science, 29, 1209–1216, 1991.
  • 47. S. Mukhopadhyay, Effects of thermal relaxations on thermoviscoelastic interactions in an unbounded body with a spherical cavity subjected to a periodic loading on the boundary, Journal of Thermal Stresses, 23, 675–684, 2000.
  • 48. D.Y. Tzou, A unified approach for heat conduction from macro-to micro-scales, Journal of Heat Transfer, 117, 8–16, 1995.
  • 49. D.Y. Tzou, Macro- to Microscale Heat Transfer: the Lagging Behavior, Series in Chemical and Mechanical Engineering, Taylor & Francis: Washington, DC, USA, 1997.
  • 50. A.M. Zenkour, E.O. Alzahrani, A.E. Abouelregal, Generalized magneto-thermoviscoelasticity in a perfectly conducting thermodiffusive medium with a spherical cavity, Journal of Earth System Science, 124, 8, 1709–1719, 2015.
  • 51. A.M. Zenkour, Thermal-shock problem for a hollow cylinder via a multi-dual-phase-lag theory, Journal of Thermal Stresses, 43, 6, 687–706, 2020.
  • 52. A.M. Zenkour, Exact coupled solution for photothermal semiconducting beams using a refined multi-phase-lag theory, Optics & Laser Technology, 128, 106233, 2020.
  • 53. A.M. Zenkour, Magneto-thermal shock for a fiber-reinforced anisotropic half-space studied with a refined multi-dual-phase-lag model, Journal of Physics and Chemistry of Solids, 137, 109213, 2020.
  • 54. A.M. Zenkour, Refined multi-phase-lags theory for photothermal waves of a gravitated semiconducting half-space, Composite Structures, 212, 346–364, 2019.
  • 55. A.M. Zenkour, Refined microtemperatures multi-phase-lags theory for plane wave propagation in thermoelastic medium, Results in Physics, 11, 929–937, 2018.
  • 56. A.M. Zenkour, D.S. Mashat, A laser pulse impactful on a half-space using the modified TPL–N models, Scientific Reports, 10, 4417, 1–12, 2020.
  • 57. H.W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, Journal of the Mechanics and Physics of Solids, 15, 5, 299–309, 1967.
  • 58. X. Wang, X. Xu, Thermoelastic wave in metal induced by ultrafast laser pulses, Journal of Thermal Stresses, 25, 457–473, 2002.
  • 59. M.N. Allam, A.E. Abouelregal, The thermoelastic waves induced by pulsed laser and varying heat of non-homogeneous microscale beam resonators, Journal of Thermal Stresses, 37, 4, 455–470, 2014.
  • 60. A.E. Green, P.M. Naghdi, Thermoelasticity without energy dissipation, Journal of Elasticity, 31, 189–208, 1993.
  • 61. G. Honig, U. Hirdes, A method for the numerical inversion of the Laplace transform, Journal of Mathematical Analysis and Applications, 10, 113–132, 1984.
  • 62. D.S. Mashat, A.M. Zenkour, A.E. Abouelregal, Thermoviscoelastic vibrations of a micro-scale beam subjected to sinusoidal pulse heating, International Journal of Acoustics & Vibration, 22, 2, 260–269, 2017.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cea42f59-fe49-45bd-9812-bfbe9ee03cfe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.