Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper discusses an idea of nanoparticles application to the flotation process. Due to the growing awareness of the environmental impact of industry and legal restrictions, the directions of research on new chemicals used in mineral processing, as well as in the other branches of industry are changing. The flotation reagents of the future should be, or are expected to be, readily biodegradable, but also their products should be harmless to the environment. A review of the works presented here presents an overview of the state-of-the-art application of nanostructures from early reported polystyrene nanoparticles to the most promising cellulose nanostructures which can be successfully adapted to the desired amphiphilicity parameters through simple functionalization. Limitations on the use of such nano-sized entities related to control aggregation in the flotation process and the ability to adsorb at interphase boundaries are also presented. Overall, nanoparticles can become universal flotation collectors and also an alternative to conventionally used hydrocarbon-based reagents.
Rocznik
Tom
Strony
280--289
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
autor
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Norwida 4/6 St., Wroclaw, Lower Silesia 50-373, Poland
autor
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Norwida 4/6 St., Wroclaw, Lower Silesia 50-373, Poland
Bibliografia
- ABARCA, C., ALI, M.M., PELTON, R.H., 2018. Choosing mineral flotation collectors from large nanoparticles libraries. J. Colloid Interface Sci. 516, 423-430.
- ABARCA, C., YANG, S., PELTON, R.H., 2015. Towards high throughput screening of nanoparticle flotation collectors. J. Colloid Interface Sci. 460, 97-104.
- ACKERMAN, P.K, HARRIS, G.H., KLIMPEL, R.R., APLAN, F.F., 1987. Evaluation of flotation collectors for copper sulfides and pyrite, III. Effect of xanthate chain length and branching. Int. J. Miner. Process. 21(1-2), 141-156.
- ACKERMAN, P.K., HARRIS, G.H., KLIMPEL, R.R., APLAN, F.F., 1999. Use of chelating agents as collectors in the flotation of copper sulfides and pyrite. Trans. Soc. Min. Metall. Explor. 16, 27-35.
- AN, M., LIAO, Y., CAO, Y., ZHAO, Y., QIU, Y., 2019. Tetrahydrofurfuryl-functionalized polystyrene nanoparticles as collectors for low rank coal floatation. Physicochem. Probl. Miner. Process. 55(2), 516-527.
- AN, M., LIAO, Y., GUI, X., ZHAO, Y., HE, Y., LIU, Z., LAI, Q., 2017. An investigation of coal flotation using nanoparticles as a collector. Int. J. Coal Prep. Util., 1-11.
- ARAUJO, D. M., YOSHIDA, M. I., TAKAHASHI, J. A., CARVALHO, C. F., STAPELFELDT, F., 2010. Biodegradation studies on fatty amines used for reverse flotation of iron ore. Int. Biodeterior. 64(2), 151–155.
- CHEN, S., GONG, W., MEI, G., ZHOU, Q., BAI, C., XU, N., 2011. Primary biodegradation of sulfide mineral flotation collectors. Miner. Eng. 24(8), 953–955.
- DHAR, P., THORNHILL, M., KOTA, R.H., 2019. Investigation of Copper Recovery from a New Copper Ore Deposit (Nussir) in Northern Norway: Dithiophosphates and Xanthate-Dithiophosphate Blend as Collectors. Minerals 9(146).
- DONG, X., PRICE, M., DAI, Z., XU, M., PELTON, R., 2017. Mineral-mineral particle collisions during flotation remove adsorbed nanoparticle flotation collectors. J. Colloid Interface Sci. 504, 178-185.
- FLETCHER, P.D.I., HOLT, B., 2011. Controlled Silanization of Silica Nanoparticles to Stabilise Foams, Climbing Films, and Liquid Marbles. Langmuir 27, 12869-12876.
- FUERSTENAU, M., JAMESON, G., YOON, R., 2007. Froth flotation: a Century of Innovation. Soc. For Mining, Mineralurgy and Exploration. Littleon, Collorado.
- GOODWIN, J.W., OTTEWILL, R.H., PELTON, R., 1979. Studies on the preparation and characterisation of monodisperse polystyrene lattices. 5. Preparation of cationic lattices. Colloid Polym. Sci. 257, 61-69.
- HAJATI, A., SHAFAEI, S.Z., NOAPARAST, M., FARROKHPAY, S., ASLANI, S., 2016. Novel application of talc nanoparticles as collector in flotation. RCS Adv. 6, 98096-98103.
- HAJATI, A., SHAFAEI, Z., NOAPARAST, M., FARROKHPAY, S., ASLANI, S., 2018. Investigating the effects of the particle size and dosage of talc nanoparticles as a novel solid collector in quartz flotation. Int. J. Min. Geo-Eng 53(1), 1- 6.
- HARTMANN, R., KINNUEN, P., ILLIKAINEN, M., 2018. Cellulose-mineral interactions based on the DLVO theory and their correlation with flotability. Miner. Eng. 122, 44-52.
- HARTMANN, R., RUDOLPH, M., ÄMMÄLÄ, A., ILLIKAINEN, M., 2017. The action of cellulose-based and conventional flotation reagents under dry and wet conditions correlating inverse gas chromatography to microflotation studies. Miner. Eng. 114, 17-25.
- HARTMANN, R., SIRVIÖ, J.A., SLIZ, R., LAITINEN, O., LIIMATAINEN, H., ÄMMÄLÄ, A., FABRITIUS, T., ILLIKAINEN, M., 2016. Interactions between aminated cellulose nanocrystals and quartz: Adsorption and wettability studies. Colloids Surf. A 489, 207-215.
- ISLAM, M.T., ALAM, M.M., PARTRUCCO, A., MONTRASOLO, A., ZOCCOLA, M., 2014. Preparation of Nanocellulose: A Review. AATCC J. Res. 1(5), 17-23.
- KEMPPAINEN, K., SUOPAJÄRVI, T., LAITINEN, O., ÄMMÄLÄ, A., LIIMATAINEN, H., 2016. Flocculation of fine hematite and quartz suspensions with anionic cellulose nanofibers. Chem. Eng. Sci. 148, 256-266.
- KOSIOR, D., KOWALCZUK, P.B., ZAWALA, J., 2018. Surface roughness in bubble attachment and flotation of highly hydrophobic solids in presence of frother – experiment and simulations. Physicochem. Probl. Miner. Process. 54(1), 63- 72.
- KRIVOSHAPKINA, E.F., MIKHAYLOV, V.I., PEROVSKIY, I.A., TORLOPOV, M.A., RYABKOV, Y.I., KRIVOSHAPKIN, P.V., 2019. The effect of cellulose nanocrystals and pH value on the flotation process for extraction of minerals. J. Solgel. Sci. Technol. 92, 319-326.
- KYZAS, G.Z., MATIS, K.A., 2019. The flotation process can go green. Processes 7(138).
- LAITINEN, O., HARTMANN, R., SIRVIÖ, J.A., LIIMATAINEN, H., RUDOLPH., M., ÄMMÄLÄ, A., ILLIKAINEN., M., 2016. Alkyl aminated nanocelluloses in selective flotation of aluminium oxide and quartz. Chem. Eng. Sci. 144, 260- 266.
- LAITINEN, O., KEMPPAINEN, K., ÄMMÄLÄ, A., SIRVIÖ, J.A., LIIMATAINEN, H., NIINIMÄKI, J., 2014. Use of Chemically Modified Nanocelluloses in Flotation of Hematite and Quartz. Ind. Eng. Chem. Res. 53, 20092-20098.
- LEGAWIEC, K.J., POLOWCZYK, I., 2020. Synergic Nanoparticles-Cationic Surfactant Interactions for Controlling Foam Systems. Practical Aspects of Chemical Engineering. PAIC 2019. Springer, Cham.
- LIIMATAINEN, H., SIRVIÖ, J.A., SUNDMAN, O., HORMI, O., NIINIMÄKI, J., 2012. Use of nanoparticular and soluble anionic celluloses in coagulation-flocculation treatment of kaolin suspension. Water Res. 46, 2159-2166.
- LIIMATAINEN, H., VISANKO, M., SIRVIÖ, J.A., HORMI, O., NIINIMÄKI, J., 2012, Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation. Biomacromolecules 13, 1592.
- LOPÉZ, R., JORDÃO, H., HARTMANN, R., ÄMMÄLÄ, A., CARVALHO, M.T., 2019. Study of butyl-amine nanocrystal cellulose in the flotation of complex sulphide ores. Colloids Surf. A 579, 123655.
- MALLAMPATI, S.R., LEE, B.H., MITOMA, Y., SIMON, C., 2018. Sustainable recovery of precious metals from end-oflife vehicles shredder residue by a novel hybrid ball-milling and nanoparticles enabled froth flotation process. J. Clean. Prod. 171, 66-75.
- MALLAMPATI, S.R., HEO, J.H., PARK, M.H., 2016. Hybrid selective surface hydrophilisation and froth flotation separation of hazardous chlorinated plastics from E-waste with novel nanoscale metallic calcium composite. J. Hazard. Mater. 306, 13-23.
- NAGARAJ, D.R., FARINATO, R.S., 2016. Evolution of flotation chemistry and chemicals: A century of innovations and the lingering challenges. Miner. Eng. 96-97, 2-14.
- NASIRIMOGHADDAM, S., MOHEBBI, A., KARIMI, M., YARAHMADI, M.R., 2020. Assessment of pH-responsive nanoparticles performance on laboratory column flotation cell applying a real ore feed. Int. J. Min. Sci. Technol. 30(2), 197-205.
- SAJJADI, S., 2006. Nanoparticle formation by monomer-starved semi-batch emulsion polymerisation. Langmuir 23, 1018- 1024.
- SIRVIÖ, J., HYVAKKO, U., LIIMATAINEN, H., NIINIMAKI, J., HORMI, O., 2011. Periodate oxidation of cellulose at elevated temperatures using metal salts as cellulose activators. Carbohydr. Polym. 83, 1293-1297.
- SPERLING, R.A, PARAK, W.J., 2010. Surface modification, functionalisation and bioconjugation of colloidal inorganic nanoparticles. Phil. Trans. R. Soc. A. 368, 1333-1383.
- SUOPÄJARVI, T., LIIMATAINEN, H., KARJALAINEN, M., UPOLA, H., NIINIMÄKI, J., 2015. Lead adsorption with sulfonated wheat pulp nanocelluloses. J. Water Process Eng. 5, 136-142.
- TORLOPOV, M.A., MIKHAYLOV, V.I., UDORATINA, E.V., ALESHINA, L.A., PRUSSKII, A.I., NIKOLAY V. TSVETKOV, KRIVOSHAPKIN, P.V., 2019. Cellulose nanocrystals with different length-to-diameter ratios extracted from various plants using novel system acetic acid/phosphotungstic acid/octanol-1. Cellulose 25, 1031-1046.
- VALLE-DELGADO, J.J., MOLINA-BOLIVAR, J., GALISTEO-GONZALEZ, F., GALVEZ-RUIZ, M.J., 2003. Study of the colloidal stability of an amphoteric latex. Colloid Polym. Sci. 281(8), 708-715.
- YANG, S., PELTON, R., 2011. Nanoparticle Flotation Collectors II: The Role of Nanoparticle Hydrophobicity. Langmuir 27, 11409-11415.
- YANG, S., PELTON, R., ABARCA, C., DAI, Z., MONTGOMERY, M., XU, M., BOS, J.A., 2013. Towards nanoparticle flotation collectors for pentlandite separation. Int. J. Miner. Process. 123, 137-144.
- YANG, S., PELTON, R., MONTGOMERY, M., CUI, Y., 2012. Nanoparticle Flotation Collectors III: The role of Nanoparticle Diameter. ASC Appl. Mater. Interfaces 4, 4882-4890.
- YANG, S., PELTON, R., RAEGEN, A., MONTGOMERY, M., DALNOKI-VERESS, K., 2011. Nanoparticle Flotation Collectors: Mechanism Behind a New Technology. Langmuir 27, 10438-10446.
- YOSHIMURA, K., MACHIDA, S., & MASUDA, F., 1980. Biodegradation of long chain alkylamines. J. Am. Oil Chem. Soc. 57(7), 238–241.
Uwagi
This article was financed in part by a statutory activity subsidy from the Polish Ministry of Science and Higher Education for the Department of Process Engineering and Technology of Polymer and Carbon Materials of the Wroclaw University of Science and Technology.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce987778-613d-43bd-931f-eb5186b4be57