PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Investigating the time dynamics of monthly rainfall time series observed in northern Lebanon by means of the detrended fluctuation analysis and the Fisher-Shannon method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigate the time dynamics of monthly rainfall series intermittently recorded on seven climatic stations in northern Lebanon from 1939 to 2010 using the detrending fluctuation analysis (DFA) and the Fisher-Shannon (FS) method. The DFA is employed to study the scaling properties of the series, while the FS method to analyze their order/organization structure. The obtained results indicate that most all the stations show a significant persistent behavior, suggesting that the dynamics of the rainfall series is governed by positive feedback mechanisms. Furthermore, we found that the Fisher Information Measure (the Shannon entropy power) seems to decrease (increase) with the height of the rain gauge; this indicates that the rainfall series appear less organized and less regular for higher-located stations. Such findings could be useful for a better comprehension of the climatic regimes governing northern Lebanon.
Czasopismo
Rocznik
Strony
1538--1555
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
  • Agenzia Regionale per la Protezione dell’Ambiente (ARPAB), Potenza, Italy
autor
  • Conseil National des Recherches Scientifiques (CNRS), Beirut, Lebanon
autor
  • Conseil National des Recherches Scientifiques (CNRS), Beirut, Lebanon
autor
  • National Research Council, Institute of Methodologies for Environmental Analysis, Tito, Italy
Bibliografia
  • 1. Angulo, J.C., J. Antolín, and K.D. Sen (2008), Fisher-Shannon plane and statistical complexity of atoms, Phys. Lett. A 372,5, 670-674, DOI: 10.1016/j.physleta.2007.07.077.
  • 2. Chen, Z., P.Ch. Ivanov, K. Hu, and H.E. Stanley (2002), Effect of nonstationarities on detrended fluctuation analysis, Phys. Rev. E 65,4, 041107, DOI: 10.1103/PhysRevE.65.041107.
  • 3. Devroye, L.A. (1987), Course in Density Estimation, Birkhäuser, Boston.
  • 4. Esquivel, R.O., J.C. Angulo, J. Antolín, J.S. Dehesa, S. López-Rosa, and N. Flores-Gallegos (2010), Analysis of complexity measures and information planes of selected molecules in position and momentum spaces, Phys. Chem. Chem. Phys. 12,26, 7108-7116, DOI: 10.1039/B927055H.
  • 5. Fisher, R.A. (1925), Theory of statistical estimation, Math. Proc. Cambridge Philos. Soc. 22,5, 700-725, DOI: 10.1017/S0305004100009580.
  • 6. Fraedrich, K., and C. Larnder (1993), Scaling regimes of composite rainfall time series, Tellus A 45,4, 289-298, DOI: 10.1034/j.1600-0870.1993.t01-3-00004.x.
  • 7. Frieden, B.R. (1990), Fisher information, disorder, and the equilibrium distributions of physics, Phys. Rev. A 41,8, 4265-4276, DOI: 10.1103/PhysRevA.41.4265.
  • 8. García-Marín, A.P., F.J. Jiménez-Hornero, and J.L. Ayuso-Muñoz (2008), Universal multifractal description of an hourly rainfall time series from a location in southern Spain, Atmósfera 21,4, 347-355.
  • 9. Gysi, H. (1998), Orographic influence on the distribution of accumulated rainfall with different wind directions, Atmos. Res. 47-48, 615-633, DOI: 10.1016/S0169-8095(97)00089-6.
  • 10. Havlin, S., S.V. Buldyrev, A. Bunde, A.L. Goldberger, P.Ch. Ivanov, C.-K. Peng, and H.E. Stanley (1999), Scaling in nature: from DNA through heartbeats to weather, Physica A 273,1-2, 46-69, DOI: 10.1016/S0378-4371(99)00340-4.
  • 11. Hu, K., P.Ch. Ivanov, Z. Chen, P. Carpena, and H.E. Stanley (2001), Effect of trends on detrended fluctuation analysis, Phys. Rev. E 64,1, 011114, DOI: 10.1103/PhysRevE.64.011114.
  • 12. Janicki, A., and A. Weron (1994), Simulation and Chaotic Behavior of α-stable Stochastic Processes, Marcel Dekker, New York.
  • 13. Lovallo, M., and L. Telesca (2011), Complexity measures and information planes of x-ray astrophysical sources, J. Stat. Mech. March 2011, P03029, DOI: 10.1088/1742-5468/2011/03/P03029.
  • 14. Martin, M.T., F. Pennini, and A. Plastino (1999), Fisher’s information and the analysis of complex signals, Phys. Lett. A 256,2-3, 173-180, DOI: 10.1016/S0375-9601(99)00211-X.
  • 15. Martin, M.T., J. Perez, and A. Plastino (2001), Fisher information and nonlinear dynamics, Physica A 291,1-4, 523-532, DOI: 10.1016/S0378-4371(00)00531-8.
  • 16. Peng, C.-K., S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, and A.L. Goldberger (1994), Mosaic organization of DNA nucleotides, Phys. Rev. E 49,2, 1685-1689, DOI: 10.1103/PhysRevE.49.1685.
  • 17. Raykar, V.C., and R. Duraiswami (2006), Fast optimal bandwidth selection for kernel density estimation. In: J. Ghosh, D. Lambert, D. Skillicorn, and J. Srivastava (eds.), Proc. 6th SIAM Int. Conf. on Data Mining, April 2006, Bethesda, USA, 524-528.
  • 18. Romera, E., and J.S. Dehesa (2004), The Fisher-Shannon information plane, an electron correlation tool, J. Chem. Phys. 120,19, 8906-8912, DOI: 10.1063/1.1697374.
  • 19. Shaban, A. (2009), Indicators and aspects of hydrological drought in Lebanon, Water Resour. Manag. 23,10, 1875-1891, DOI: 10.1007/s11269-008-9358-1.
  • 20. Shaban, A. (2011), Analyzing climatic and hydrologic trends in Lebanon, J. Environ. Sci. Eng. 5,483-492.
  • 21. Shannon, C.E. (1948), A mathematical theory of communication, Bell Syst. Tech. J. 27,379-423, 623-656.
  • 22. Svensson, C., J. Olsson, and R. Berndtsson (1996), Multifractal properties of daily rainfall in two different climates, Water Resour. Res. 32,8, 2463-2472, DOI: 10.1029/96WR01099.
  • 23. Telesca, L. (2007), Cycles, scaling and crossover phenomenon in length of the day (LOD) time series, Physica A 379,2, 459-464, DOI: 10.1016/j.physa.2007.02.064.
  • 24. Telesca, L., and K. Hattori (2007), Non-uniform scaling behavior in ultra-low frequency (ULF) earthquake-related geomagnetic signals, Physica A 384,2, 522-528, DOI: 10.1016/j.physa.2007.05.040.
  • 25. Telesca, L., and M. Lovallo (2009), Non-uniform scaling features in central Italy seismicity: A non-linear approach in investigating seismic patterns and detection of possible earthquake precursors, Geophys. Res. Lett. 36,1, L01308, DOI: 10.1029/2008GL036247.
  • 26. Telesca, L., and M. Lovallo (2011), Analysis of the time dynamics in wind records by means of multifractal detrended fluctuation analysis and the Fisher-Shannon information plane, J. Stat. Mech. P07001, DOI: 10.1088/1742-5468/2011/07/P07001.
  • 27. Telesca, L., M. Lovallo, A. Ramirez-Rojas, and F. Angulo-Brown (2009), A nonlinear strategy to reveal seismic precursory signatures in earthquake-related self-potential signals, Physica A 388,10, 2036-2040, DOI: 10.1016/j.physa.2009.01.035.
  • 28. Telesca, L., M. Lovallo, and R. Carniel (2010), Time-dependent Fisher Information Measure of volcanic tremor before 5 April 2003 paroxysm at Stromboli volcano, Italy, J. Volcanol. Geoterm. Res. 195,1, 78-82, DOI: 10.1016/j.jvolgeores.2010.06.010.
  • 29. Telesca, L., M. Lovallo, H.-L. Hsu, and C.-C. Chen (2011), Analysis of dynamics in magnetotelluric data by using the Fisher-Shannon method, Physica A 390,7, 1350-1355, DOI: 10.1016/j.physa.2010.12.005.
  • 30. Troudi, M., A.M. Alimi, and S. Saoudi (2008), Analytical plug-in method for kernel density estimator applied to genetic neutrality study, EURASIP J. Adv. Sig. Process., Article ID739082, DOI: 10.1155/2008/739082.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce984040-860e-4d9b-babd-37a5c76181f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.