PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physicochemical mechanisms of mineral nanoparticles effects on pulmonary gas/liquid interface studied in model systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Inhaled mineral nanoparticles which are deposited on the lung surface may influence the gas/liquid barrier and the pulmonary surfactant (PS) which constitutes the vital element of the respiratory system. This research is focused on the physicochemical effects caused by selected clay nanoparticles (bentonite, halloysite, montmorillonites) interacting with PS and changing its original surface activity. Using three measuring methods (pulsating bubble technique, Langmuir balance and drop shape analysis), we demonstrated the influence of different mineral nanoparticles on the dynamic surface tension of animal-derived PS material (Survanta®) and main surfactant phospholipid (DPPC). The results which are dependent on material properties and concentration allow to hypothesize possible pathways of health effects from inhalation of mineral nanoparticles. This may help to set the guidelines in defining occupational safety standards and methods of protection of the respiratory system against inhaled mineral dusts.
Rocznik
Strony
57--69
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
  • Central Institute for Labour Protection – National Research Institute, Czerniakowska 16, 00-701 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Warynskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. BAKAND S., HAHES A., DECHSAKULTHORN F., 2012. Nanoparticles: a review of particle toxicology following inhalation exposure. Inhal. Toxicol. 24, 125–135.
  • 2.BAKSHI M.S., ZHAO L., SMITH R. et al., 2008. Metal nanoparticle pollutants interfere with pulmonary surfactant function in vitro. Biophys. J. 94, 855–868.
  • 3. CHOE S., CHANG R., JEON J., VIOLI A., 2008. Molecular Dynamics simulation study of a pulmonary surfactant film interacting with a carbonaceous nanoparticle. Biophys. J. 95, 4102–4114.
  • 4. CLEMENTS J.A., HUSTEAD R.F., JOHNSON R.P., 1961. Pulmonary surface tension and alveolar stability. J. Appl. Physiol. 16, 444-450.
  • 5. ENGLE W.A. AND THE COMMITTEE ON FETUS AND NEWBORN, 2008. Surfactant-replacement therapy for respiratory distress in the preterm and term neonate. Pediatrics 121, 419-432.
  • 6. FAN Q., WANG Y.E., ZHAO X. et al., 2011. Adverse biophysical effects of hydroxyapatite nanoparticles on natural pulmonary surfactant. ACS Nano 5, 6410–6416.
  • 7. GRADOŃ L., PODGÓRSKI A., 1989. Hydrodynamical model of pulmonary clearance. Chem. Eng. Sci. 44, 741-749.
  • 8. GUZMAN E., LIGGIERI L., SANTINI E., FERRARI M., RAVERA F., 2011. Effect of hydrophilic and hydrophobic nanoparticles on the surface pressure response of DPPC monolayers. J. Phys. Chem. C, 115, 21715–21722.
  • 9. HARISHCHANDRA R.K., SALEEM M, GALLA H.-J., 2010. Nanoparticle interaction with model lung surfactant monolayers. J. R. Soc. Interface 7, S15–S26.
  • 10. LAM B.C., NG Y.K., WONG K.Y., 2005. Randomized trial comparing two natural surfactants (Survanta vs. bLES) for treatment of neonatal respiratory distress syndrome. Pediatr. Pulmonol. 39, 64–69.
  • 11. LONGEST P.W., HOLBROOK L.T. , 2012. In silico models of aerosol delivery to the respiratory tract – development and applications. Adv. Drug Del. Rev. 64, 296–311.
  • 12. KONDEJ D., SOSNOWSKI T.R., 2010. The influence of metal-containing occupational dust on pulmonary surfactant activity. Chem. Eng. Trans. 19, 315–320.
  • 13. KONDEJ D., SOSNOWSKI T.R., 2013. Alteration of biophysical activity of pulmonary surfactant by aluminosilicate nanoparticles. Inhal. Toxicol. 25, 77–83.
  • 14. MARIJNISSEN J.C.M., GRADOŃ L., 2010. Nanoparticles in medicine and environment: inhalation and health effects. Springer, Berlin.
  • 15. MAYNARD A.D., KUEMPEL E.D., 2005. Airborne nanostructured particles and occupational health. J. Nanoparticle Res. 7, 587–614.
  • 16. NOTTER R.H., TAUBOLD R., MAVIS R.D., 1982. Hysteresis in saturated phospholipid and its potential relevance in vivo. Exp. Lung. Res. 3, 109–127.
  • 17. OBERDÖRSTER G., 2001. Pulmonary effects of inhaled ultrafine particles. Int. Arch. Occup. Environ. Health 74, 1–8.
  • 18. ROSTAMI A.A., 2009. Computational modeling of aerosol deposition in respiratory tract: a review. Inhal. Toxicol. 21, 262–290.
  • 19. RUGONYI S., BISWAS S.C., HALL S.B., 2008. The biophysical function of pulmonary surfactant. Resp. Physiol. Neurobiol. 163, 244–255.
  • 20. SOSNOWSKI T.R., 2001. Sorption-induced Marangoni microflows in the pulmonary surfactant system. Inż. Chem. Proces. 22, 251–267.
  • 21. SOSNOWSKI T.R., 2011. Importance of airway geometry and respiratory parameters variability for particle deposition in the human respiratory tract. J. Thorac. Dis. 3, 153–155.
  • 22. SOSNOWSKI T.R., GRADOŃ L., PODGÓRSKI A., 2000. Influence of insoluble aerosol deposits on the surface activity of the pulmonary surfactant: a possible mechanism of alveolar clearance retardation? Aerosol Sci. Techn. 32, 52–60.
  • 23. SOSNOWSKI T.R., GRADOŃ L., SKOCZEK M., DROŹDZIEL H., 1998. Experimental evaluation of importance of the pulmonary surfactant for oxygen transfer rate in human lungs. Int. J. Occup. Safety Ergon. 4, 391–409
  • 24. SOSNOWSKI T.R., KOLIŃSKI M., GRADOŃ L., 2012. Alteration of surface properties of dipalmitoyl phosphatidylcholine by benzo[a]pyrene: a model of pulmonary effects of diesel exhaust inhalation. J. Biomed. Nanotechnol. 8, 818–825.
  • 25. SOSNOWSKI T.R., MOSKAL A., GRADOŃ L., 2006. Dynamics of oro-pharyngeal aerosol transport and deposition with the realistic flow pattern. Inhal. Toxicol. 18, 773–780.
  • 26. WALLACE W.E., KEANE M.J, MURRAY D.K. et al., 2007. Phospholipid lung surfactant and nanoparticle surface toxicity: lessons from diesel soots and silicate dusts. J. Nanopart. Res. 9, 23–38.
  • 27. ZHANG Z., KLEINSTREUER C., KIM C.S., 2002. Cyclic micron-size particle inhalation and deposition in a triple bifurcation lung airway model. J. Aerosol Sci. 33, 257–281.
  • 28. ZHANG, L., ASGHARIAN, B., ANJILVEL, S., 1996. Inertial and interceptional deposition of fibers in a bifurcating airway. J. Aerosol Med. 9, 419-430.
  • 29. ZUO Y.Y., VELDHUIZEN R.A.W., NEUMANN A.W., PETERSEN N.O., POSSMAYER F., 2008. Current perspectives in pulmonary surfactant – Inhibition, enhancement and evaluation. Biochim. Biophys. Acta 1778, 1947–1977.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce8ff63d-f748-4a54-a883-8a6a20cc09e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.