PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of physico-mechanical properties of intact rocks using artifcial neural network

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The determination of the physico-mechanical characteristics of rocks is very essential for the planning and implementation of engineering structures as well as for the classification of the rock mass. These physico-mechanical properties are often obtained directly in the laboratory by using standard tests on specific core samples and/or cut samples. However, these experiments are difficult to perform, destructive, time-consuming, costly, and are impossible to execute in some cases due to the complex nature of some rocks. Hence, there is a need to develop an indirect approach to estimate these physico-mechanical properties of rocks. The artificial neural network (ANN) technique has been proven to be well suited for developing predictive models for the estimation of the physico-mechanical characteristics of rocks. Therefore, this study presents new ANN models to predict uniaxial compressive strength (UCS), dry unit weight (DUW), Brazilian tensile strength (TS), point load index (Is(50)), porosity (ɸ), and the Schmidt hardness (RN) based on the seismic P-wave velocity (Vp), and to compare the ANN models with conventional empirical models. Three error indexes including determination coefficient (R2 ), average absolute percentage error, and root mean square error were determined to assess the reliability of the newly developed ANN models. The results show that the developed models were able to predict the UCS, DUW, TS, Is(50), ɸ and the RN from the Vp of intact rocks with high accuracy, determination coefficient (R2 ) of more than 0.89 was achieved. The ANN models also showed better performance compared to the conventional empirical models.
Czasopismo
Rocznik
Strony
1769--1788
Opis fizyczny
Bibliogr. 91 poz.
Twórcy
autor
  • Petroleum Engineering Department, College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
  • Boone Pickens School of Geology, Oklahoma State University, Stillwater, OK 74078, USA
  • Department of Geophysics, Federal University Oye Ekiti, Oye, Ekiti State, Nigeria
Bibliografia
  • 1. Abdi Y, Khanlari G, Jamshidi A (2018) Correlation between mechanical properties of sandstones and p-wave velocity in different degrees of saturation. Geotech Geol Eng. https://doi.org/10.1007/s10706-018-0721-6
  • 2. Aboutaleb S, Behnia M, Bagherpour R, Bluekian B (2017) Using non-destructive tests for estimating uniaxial compressive strength and static Young’s modulus of carbonate rocks via some modeling techniques. Bull Eng Geol Environ 77:1717–1728. https://doi.org/10.1007/s10064-017-1043-2
  • 3. Al-AbdulJabbar A, Elkatatny S, Mahmoud M, Abdelgawad K, Al-Majed A (2019) A robust rate of penetration model for carbonate formation. J Energy Resour Technol 141(4):042903. https://doi.org/10.1115/1.4041840
  • 4. Aladejare AE (2016) Development of Bayesian probabilistic approaches for rock property characterization (PhD Thesis). Hong Kong, China: City University of Hong Kong
  • 5. Aladejare AE (2020) Evaluation of empirical estimation of uniaxial compressive strength of rock using measurements from index and physical tests. J Rock Mech Geotech Eng 12(2):256–268. https://doi.org/10.1016/j.jrmge.2019.08.001
  • 6. Aladejare AE, Wang Y (2018) Influence of rock property correlation on reliability analysis of rock slope stability: from property characterization to reliability analysis. Geosc Fron 9(6):1639–1648. https://doi.org/10.1016/j.gsf.2017.10.003
  • 7. Aliyu MM, Shang J, Murphy W, Lawrence JA, Collier R, Kong F, Zhao Z (2019) Assessing the uniaxial compressive strength of extremely hard cryptocrystalline flint. Int J Rock Mech Min Sci 113:310–321. https://doi.org/10.1016/j.ijrmms.2018.12.002
  • 8. Aquino-Lopez A, Mousatov A, Markov M, Kazatchenko E (2015) Modeling and inversion of elastic wave velocities and electrical conductivity in clastic formations with structural and dispersed shales. J App Geoph 116:28–42. https://doi.org/10.1016/j.jappgeo.2015.02.013
  • 9. Armaghani DJ, Mohamad ET, Momeni E, Monjezi M, Narayanasamy MS (2016a) Prediction of the strength and elasticity modulus of granite through an expert artificial neural network. Arab J Geosci 9:48. https://doi.org/10.1007/s12517-015-2057-3
  • 10. Armaghani DJ, Mohamad ET, Momeni E, Narayanasamy MS (2015) An adaptive neurofuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on main range granite. Bull Eng Geol Environ 74:1301–1319. https://doi.org/10.1007/s10064-014-0687-4
  • 11. Armaghani DJ, Mohamad ET, Hajihassani M, Yagiz S, Motaghedi H (2016b) Application of several non-linear prediction tools for estimating uniaxial compressive strength of granitic rocks and comparison of their performances. Eng Comp 32:189–206. https://doi.org/10.1007/s00366-015-0410-5
  • 12. Asadi M, Bagheripour MH, Eftekhari M (2013) Development of optimal fuzzy models for predicting the strength of intact rocks. Comput Geosci 54:107–112. https://doi.org/10.1016/j.cageo.2012.11.017
  • 13. ASTM (2001) Standard practice for preparing rock core specimens and determining dimensional and shape tolerances. Am Soc Test Mater. https://doi.org/10.1520/D4543-08E01
  • 14. Azimian A (2017) Application of statistical methods for predicting uniaxial compressive strength of limestone rocks using nondestructive tests. Acta Geotech 12:321–333. https://doi.org/10.1007/s11440-016-0467-3
  • 15. Azimian A, Ajalloeian R (2015) Empirical correlation of physical and mechanical properties of marly rocks with P wave velocity. Arab J Geosci 8(4):2069–2079. https://doi.org/10.1007/s12517-013-1235-4
  • 16. Bartosch-Harlid A, Andersson B, Aho U, Nilsson J, Andersson R (2008) Artificial neural networks in pancreatic disease. Br J Surg 95(7):817–826. https://doi.org/10.1002/bjs.6239 (PMID: 18551536)
  • 17. Baykasoglu A, Gullu H, Canakci H, Ozbakır L (2008) Predicting of compressive and tensile strength of limestone via genetic programming. Expert Syst Appl 35:111–123. https://doi.org/10.1016/j.eswa.2007.06.006
  • 18. Ceryan N (2014) Application of support vector machines and relevance vector machines in predicting uniaxial compressive strength of volcanic rocks. J Afr Earth Sc 100:634–644. https://doi.org/10.1016/j.jafrearsci.2014.08.006
  • 19. Ceryan N, Okkan U, Kesimal A (2012) Prediction of unconfined compressive strength of carbonate rocks using artificial neural networks. Environ Earth Sci 68(3):807–819. https://doi.org/10.1007/s12665-012-1783-z
  • 20. Ceryan N, Samui P (2020) Application of soft computing methods in predicting uniaxial compressive strength of the volcanic rocks with different weathering degree. Arab J Geosci 13:288. https://doi.org/10.1007/s12517-020-5273-4
  • 21. Cevik A, Sezer EA, Cabalar AF, Gokceoglu C (2011) Modelling of the uniaxial compressive strength of some clay-bearing rocks using neural network. App Soft Comp 11(2):2586–2593. https://doi.org/10.1016/j.asoc.2010.10.008
  • 22. Cobanglu I, Celik S (2008) Estimation of uniaxial compressive strength from point load strength, Schmidt hardness and P-wave velocity. Bull Eng Geol Environ 67:491–498. https://doi.org/10.1007/s10064-008-0158-x
  • 23. Dehghan S, Sattari GH, Chehreh CS, Aliabadi MA (2010) Prediction of unconfined compressive strength and modulus of elasticity for travertine samples using regression and artificial neural Networks. Min Sci Technol 20:41–46. https://doi.org/10.1016/S1674-5264(09)60158-7
  • 24. Diamantis K, Bellas S, Migiros G, Gartzos E (2011) Correlating wave velocities with physical, mechanical properties and petrographic characteristics of peridotites from the central Greece. Geotech Geol Eng 29(6):1049–1062. https://doi.org/10.1007/s10706-011-9436-7
  • 25. Elkatatny S (2018) New approach to optimize the rate of penetration using artificial neural network. Arab J Sci Eng 43:6297–6304. https://doi.org/10.1007/s13369-017-3022-0
  • 26. Fatoba JO, Sanuade OA, Amosun JO, Hammed OS (2018) Prediction of hydraulic conductivity from Dar Zarrouk parameters using artificial neural network. Indian J Geosci 72(1):51–64
  • 27. Fener M (2011) The effect of rock sample dimension on the P-wave velocity. J Nondestruct Eval 30:99–105. https://doi.org/10.1007/s10921-011-0095-7
  • 28. Gaviglio P (1989) Longitudinal waves propagation in a limestone: the relationship between velocity and density. Rock Mech Rock Eng 22:299–306. https://doi.org/10.1007/BF01262285
  • 29. Ham F (2001) Kostanic I (2001) Principles of neuro computing for science and engineering. Mcgraw-Hill, USA
  • 30. Hassan A, Elkatatny S, Abdulraheem A (2019a) Application of artificial intelligence techniques to predict the well productivity of fishbone wells. Sust 11(21):6083
  • 31. Hassan A, Elkatatny S, Abdulraheem A (2019b) Intelligent prediction of minimum miscibility pressure (MMP) during CO2 flooding using artificial Intelligence techniques. Sust 11(24):7020
  • 32. ISRM (2007). In: Ulusay, R., Hudson, J.A. (Eds.), The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974–2006. Kozan Ofset Matbaacılık, Ankara
  • 33. Jug J, Stanko D, Grabar K, Hrženjak P (2020) New approach in the application of seismic methods for assessing surface excavatability of sedimentary rocks. Bull Eng Geol Environ. https://doi.org/10.1007/s10064-020-01802-1
  • 34. Kahraman S, Gunaydin O (2009) Reply to Yagiz’s discussion on Kahraman and Gunaydin (2008) indentation hardness test to estimate the sawability of carbonate rocks. Bull eng geol environ 67:507–511. Bull Eng Geol Environ 68:441–442. https://doi.org/10.1007/s10064-009-0199-9
  • 35. Kahraman S, Yeken T (2008) Determination of physical properties of carbonate rocks from P-wave velocity. Bull Eng Geol Environ 67(2):277–281. https://doi.org/10.1007/s10064-008-0139-0
  • 36. Kaur H, Wasan SK (2006) Empirical study on applications of data mining techniques in healthcare. J Com Sci 2(2):194–200
  • 37. Khajevand R, Fereidooni D (2018) Assessing the empirical correlations between engineering properties and P wave velocity of some sedimentary rock samples from Damghan, northern Iran. Arab J Geosci 11:528. https://doi.org/10.1007/s12517-018-3810-1
  • 38. Khandelwal M (2013) Correlating P-wave velocity with the physico-mechanical properties of different rocks. Pure Appl Geophys 170:507–514. https://doi.org/10.1007/s00024-012-0556-7
  • 39. Khandelwal M, Ranjith PG (2010) Correlating index properties of rocks with P-wave measurements. J App Geoph 71(1):1–5. https://doi.org/10.1016/j.jappgeo.2010.01.007
  • 40. Khandelwal M, Singh TN (2009) Correlating static properties of coal measures rocks with P-wave velocity. Int J Coal Geol 79:55–60. https://doi.org/10.1016/j.coal.2009.01.004
  • 41. Kovačević MS, Marčić D, Gazdek M (2013) Application of geophysical investigations in underground engineering. Techn Gazette 20(6):1111–1117
  • 42. Kumar ChV (2021) New approach for prediction of specific energy using sound levels produced during core drilling operations. Geom Geoeng: An Int J. https://doi.org/10.1080/17486025.2021.1940312
  • 43. Kumar ChV, Vardhan H, Murthy ChSN, Karmakar NC (2019a) Estimating rock properties using sound signal dominant frequencies during diamond core drilling operations. J Rock Mech Geot Eng 11(4):850–859. https://doi.org/10.1016/j.jrmge.2019.01.001
  • 44. Kumar ChV, Vardhan H, Murthy ChSN (2019b) Multiple regression model for prediction of rock properties using acoustic frequency during core drilling operations. Geom Geoeng: An Int J. https://doi.org/10.1080/17486025.2019.1641631
  • 45. Kumar ChV, Vardhan H, Murthy ChSN (2019c) Quantification of rock properties using frequency analysis during diamond core drilling operations. J Inst Eng 100(1):67–81. https://doi.org/10.1007/s40033-019-00174-5
  • 46. Kumar ChV, Murthy ChSN, Vardhan H (2020) Prediction of specific energy using dominant frequency of acoustics produced during diamond core drilling operations. In: AIP conference proceedings 2204, 040003. https://doi.org/10.1063/1.5141576
  • 47. Kumar ChV, Vardhan H, Murthy ChSN (2021) Artificial neural network for prediction of rock properties using acoustic frequencies recorded during rock drilling operations. Model Earth Syst Environ. https://doi.org/10.1007/s40808-021-01103-w
  • 48. Kurtuluʂ C, Sertçelik F, Sertçelik I (2016) Correlating physico-mechanical properties of intact rocks with P-wave velocity. Acta Geod Geophys 51(3):571–582. https://doi.org/10.1007/s40328-015-0145-1
  • 49. Lee CW, Park JA (2001) Assessment of HIV/AIDS-related health performance using an artificial neural network. Inf Manag 38(4):231–238. https://doi.org/10.1016/S0378-7206(00)00068-9
  • 50. Lee JS, Yoon HK (2017) Characterization of rock weathering using elastic waves: a laboratory-scale experimental study. J Appl Geophys 140:24–33. https://doi.org/10.1016/j.jappgeo.2017.03.008
  • 51. Madhubabu N, Singh PK, Kainthola A, Mahanta B, Tripathy A, Singh TN (2016) Prediction of compressive strength and elastic modulus of carbonate rocks. Meas J 88:202–213. https://doi.org/10.1016/j.measurement.2016.03.050
  • 52. Marto A, Hajihassani M, Jahed Armaghani D, Tonnizam Mohamad E, Makhtar AM (2014) A novel approach for blast-induced flyrock prediction based on imperialist competitive algorithm and artificial neural network. Sci World J. https://doi.org/10.1155/2014/643715
  • 53. MathWorks, Inc (2008) Neural network toolbox 6, user’s guide. MathWorks, Inc
  • 54. Meulenkamp F, Grima MA (1999) Application of neural networks for the prediction of the unconfined compressive strength (UCS) from equotip hardness. Int J Rock Mech Min Sci 36:29–39
  • 55. Minaeian B, Ahangari K (2013) Estimation of uniaxial compressive strength based on P-wave and Schmidt hammer rebound using statistical method. Arab J Geosci. https://doi.org/10.1007/s12517-011-0460-y
  • 56. Momeni E, Armaghani DJ, Hajihassani M, Amin MFM (2015) Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks. Meas J 60:50–63. https://doi.org/10.1016/j.measurement.2014.09.075
  • 57. Moosazadeh S, Namazi E, Aghababaei H, Marto A, Mohamad H, Hajihassani M (2019) Prediction of building damage induced by tunnelling through an optimized artificial neural network. Eng Comput 35(2):579–591. https://doi.org/10.1007/s00366-018-0615-5
  • 58. Moradian ZA, Behnia M (2009) Predicting the uniaxial compressive strength and static Young’s modulus of intact sedimentary rocks using the ultrasonic test. Int J Geomech 9(1):14–19. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:1(14)
  • 59. Mukaka MM (2012) A guide to appropriate use of correlation coefficient in medical research. Malawi Med J 24(3):69–71
  • 60. Olayiwola O, Sanuade OA (2021) A data-driven approach to predict compressional and shear wave velocities in reservoir rocks. Petroleum 7(2):199–208. https://doi.org/10.1016/j.petlm.2020.07.008
  • 61. Pham BT, Son LH, Hoang TA, Nguyen DM, Tien Bui D (2018) Prediction of shear strength of soft soil using machine learning methods. CATENA 166:181–191. https://doi.org/10.1016/j.catena.2018.04.004
  • 62. Phoon KK, Kulhawy FH (1999) Evaluation of geotechnical property variability. Can Geotech J 36(4):625–639. https://doi.org/10.1139/t99-039
  • 63. Qi C, Fourie A, Ma G, Tang X (2018) A hybrid method for improved stability prediction in construction projects: a case study of stope hangingwall stability. Appl Soft Comput 71:649–658. https://doi.org/10.1016/j.asoc.2018.07.035
  • 64. Rabbani E, Sharif F, Salooki MK, Moradzadeh A (2012) Application of neural network technique for prediction of uniaxial compressive strength using reservoir formation properties. Int J Rock Mech Min Sci 56:100–111
  • 65. Rajabzadeh MA, Moosavinasab Z, Rakhshandehroo G (2012) Effects of rock classes and porosity on the relation between uniaxial compressive strength and some rock properties for carbonate rocks. Rock Mech Rock Eng 45(1):113–122. https://doi.org/10.1007/s00603-011-0169-y
  • 66. Rezaei M, Davoodi PK, Najmoddini I (2019) Studying the correlation of rock properties with P-wave velocity index in dry and saturated conditions. J Appl Geoph 169:49–57. https://doi.org/10.1016/j.jappgeo.2019.04.017
  • 67. Rogers SJ, Chen HC, Kopaska-Merkel DC, Fang JH (1995) Predicting permeability from porosity using artificial neural networks. AAPG Bull 79(12):1786–1797. https://doi.org/10.1306/7834DEFE-1721-11D7-8645000102C1865D
  • 68. Roy DG, Singh TN (2020) Predicting deformational properties of Indian coal: Soft computing and regression analysis approach. Meas J 149:106975. https://doi.org/10.1016/j.measurement.2019.106975
  • 69. Sanuade OA, Adesina RB, Amosun JO, Fajana AO, Olaseeni OG (2017) Using artificial neural network to predict dry density of soil from thermal conductivity. RMZ-Mater Geoenviron 64(3):169–180. https://doi.org/10.1515/rmzmag-2017-0012
  • 70. Sanuade OA, Adetokunbo P, Oladunjoye MA, Olaojo AA (2018) Predicting moisture content of soil from thermal properties using artificial neural network. Arab J Geosci 11:566. https://doi.org/10.1007/s12517-018-3917-4
  • 71. Sanuade OA, Hassan AM, Akanji AO, Olaojo AA, Oladunjoye AA, Abdulraheem A (2020) New empirical equation to estimate the soil moisture content based on thermal properties using machine learning techniques. Arab J Geosci 13:377. https://doi.org/10.1007/s12517-020-05375-x
  • 72. Sarkar K, Vishal V, Singh TN (2012) An empirical correlation of index geomechanical parameters with the compressional wave velocity. Geotech Geol Eng 30:469–479. https://doi.org/10.1007/s10706-011-9481-2
  • 73. Shahid N, Rappon T, Berta W (2019) Applications of artificial neural networks in health care organizational decision-making: a scoping review. PLoS ONE 14(2):e0212356. https://doi.org/10.1371/journal.pone.0212356
  • 74. Sharma PK, Khandelwal M, Singh TN (2011) A correlation between Schmidt hammer rebound numbers with impact strength index, slake durability index and P-wave velocity. Int J Earth Sci (geol Rundsch) 100:189–195. https://doi.org/10.1007/s00531-009-0506-5
  • 75. Sharma PK, Singh TN (2008) A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bull Eng Geol Environ 67:17–22. https://doi.org/10.1007/s10064-007-0109-y
  • 76. Singh S, Kanli AI, Sevgen S (2016) A general approach for porosity estimation using artificial neural network method: a case study from Kansas gas field. Stud Geophys Geod 60:130–140. https://doi.org/10.1007/s11200-015-0820-2
  • 77. Singh VK, Singh D, Singh TN (2001) Prediction of strength properties of some schistose rocks from petrographic properties using artificial neural networks. Int J Rock Mech Min Sci 38(2):269–284. https://doi.org/10.1016/S1365-1609(00)00078-2
  • 78. Soupios P, Kokinou E (2016) Environmental geophysics: techniques, advantages and limitations. In: Gemma A (Ed) Book geophysics: principles, applications and emerging technologies, Nova Publisher, pp 13–47
  • 79. Sousa LMO, Suarez del Rio LM, Calleja L, Ruiz de Argandona V, Rey AR (2005) Influence of microfractures and porosity on the physico-mechanics properties and weathering of ornamental granites. Eng Geol 77:153–168. https://doi.org/10.1016/j.enggeo.2004.10.001
  • 80. Swinscow TDV (1997) Statistics at square one, Revised by M J Campbell, University of Southampton, Nineth Edition. Copyright BMJ Publishing Group
  • 81. Tian J, Qi C, Sun Y, Yaseen ZM, Pham BT (2020) Permeability prediction of porous media using a combination of computational fluid dynamics and hybrid machine learning methods. Eng Comp J. https://doi.org/10.1007/s00366-020-01012-z
  • 82. Topuz A (2010) Predicting moisture content of agricultural products using artificial neural networks. Adv Eng Softw 41(3):464–470. https://doi.org/10.1016/j.advengsoft.2009.10.003
  • 83. Torabi-Kaveh M, Naseri F, Saneie S, Sarshari B (2015) Application of artificial neural networks and multivariate statistics to predict UCS and E using physical properties of Asmari limestones. Arab J Geosci 8:2889–2897. https://doi.org/10.1007/s12517-014-1331-0
  • 84. Uyanık O, Sabbag N, Uyanık NA, Öncü Z (2019) Prediction of mechanical and physical properties of some sedimentary rocks from ultrasonic velocities. Bull Eng Geol Env 78:6003–6016. https://doi.org/10.1007/s10064-019-01501-6
  • 85. Wang CW, Chau KW, Cheng CT, Qiu L (2009) A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J Hydrol 374(3–4):294–306. https://doi.org/10.1016/j.jhydrol.2009.06.019
  • 86. Wang Y, Aladejare AE (2016) Bayesian characterization of correlation between uniaxial compressive strength and Young’s modulus of rock. Int J Rock Mech Min Sci 85:10–19. https://doi.org/10.1016/j.ijrmms.2016.02.010
  • 87. Yagiz S (2011a) Correlation between slake durability and rock properties for some carbonate rocks. Bull Eng Geol Environ 70:377–383. https://doi.org/10.1007/s10064-010-0317-8
  • 88. Yagiz S (2011b) P-wave velocity test for assessment of geotechnical properties of some rock materials. Bull Mater Sci 34(4):947–953. https://doi.org/10.1007/s12034-011-0220-3
  • 89. Yasar E, Erdogan Y (2004) Correlating sound velocity with the density, compressive strength and Young’s modulus of carbonate rocks. Int J Rock Mech Min Sci 41:871–875. https://doi.org/10.1016/j.ijrmms.2004.01.012
  • 90. Zargar G, Tanha AA, Parizad A, Amouri M, Bagheri H (2019) Reservoir rock properties estimation based on conventional and NMR log data using ANN-Cuckoo: a case study in one of super fields in Iran southwest. Petrol J. https://doi.org/10.1016/j.petlm.2019.12.002
  • 91. Zorlu K, Gokceoglu C, Ocakoglu F, Nefeslioglu HA, Acikalin S (2008) Prediction of uniaxial compressive strength of sandstones using petrography-based models. Eng Geol 96(3):141–158. https://doi.org/10.1016/j.enggeo.2007.10.009
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce8f6905-5bb9-4eff-ae0e-658806f00c35
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.