PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lignocellulosic biomass as a feedstock for the cellulose ethanol (2G) production

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Biomasa lignocelulozowa jako substrat do produkcji etanolu celulozowego (2G)
Języki publikacji
EN
Abstrakty
EN
In the paper, the possibilities of utilizing the lignocellulosic biomass in the second generation bioethanol (2G) production were presented. The most important groups of lignocellulosic raw materials were characterized. The composition and structure of biomass and the methods for its conversion to ethanol were described. Moreover, the conceptions of utilizing the lignocellulosic biomass not only as the renewable energy source for production of biofuels but also of other products with the value added within the frames of integrated technological processes in biorefineries, with the consideration of the estimated costs of cellulose ethanol production were presented.
PL
W pracy przedstawiono możliwości wykorzystania biomasy lignocelulozowej do produkcji bioetanolu drugiej generacji (2G). Scharakteryzowano najważniejsze grupy surowców lignocelulozowych. Opisano skład i budowę biomasy oraz metody jej konwersji do bioetanolu. Ponadto zaprezentowano koncepcje wykorzystania biomasy lignocelulozowej nie tylko jako odnawialnego źródła do produkcji biopaliw, ale również innych produktów o wartości dodanej w ramach zintegrowanych procesów technologicznych w biorafineriach, z uwzględnieniem szacunkowych kosztów wytworzenia etanolu celulozowego.
Rocznik
Tom
Strony
9--17
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • West Pomeranian University of Technology, Department of Renewable Energy Engineering, Pawła VI 1, 71-459 Szczecin
Bibliografia
  • [1] Robak K., Balcerek M., 2018. Review of Second Generation Bioethanol Production from Residual Biomass. Food Technol. Biotechnol., 56(2), 174-187. Doi:10.17113/ftb.56.02.18.5428.
  • [2] Khetkorn W., Rastogi R.P., Incharoensakdi A., Lindblad P., Madamwar D., Pandey A., Larroche Ch., 2017. Microalgal hydrogen production: a review. Bioresour. Technol., 243, 1194-1206. Doi:10.1016/j.biortech.2017.07.085.
  • [3] Khalili S., Rantanen E., Bogdanov D., Breyer C., 2019. Global transportation demand development with impacts on the energy demand and greenhouse gas emissions in a climate-constrained world. Energies, 12, 3870. Doi:10.3390/en12203870.
  • [4] Ahlgren E., Hagberg M.B., Grahn M., 2017. Transport biofuels in global energy-economy modelling - A review of comprehensive energy systems assessment approaches. GCB Bioenergy, 9, 1168-1180. Doi:10.1111/gcbb.12431.
  • [5] Lennartsson P.R., Erlandsson P., Taherzadeh M.J., 2014. Integration of the first and second generation bioethanol processes and the importance of by-products. Bioresour. Technol., 165, 3-8.
  • [6] Muktham R., Bhargava S.K., Bankupalli S., Ball A.S. 2016. A Review on 1st and 2nd generation bioethanol production - Recent progress. J. Sustain. Bioenergy Syst., 6(3), 72-92.
  • [7] Hahn-Hägerdal B., Galbe M., Gorwa-Grauslund M.-F., Lidén G., Zac-Chi G. 2006. Bioethanol - the fuel of tomorrow from the residues of today. Trends Biotechnol., 24, 549-556.
  • [8] Neary D.G., 2018. Impacts of Bio-Based Energy Generation Fuels on Water and Soil Resources. In: Energy Systems and Environment, Pavel Tsvetkov, IntechOpen. Doi:10.5772/intechopen.74343.
  • [9] IRENA, 2018. Global energy transformation: A roadmap to 2050. Int. Renew. Energ. Agency, Abu Dhabi.
  • [10] Zabed H, Faruq G,Sahu J,Boyce A,Ganesan P., 2016. A comparative study on normal and high sugary corn genotypes for evaluating enzyme consumption during dry-grind ethanol production. Chem. Eng. J., 287, 691-703.
  • [11] Saini J.K., Gupta R., Hemansi, Verma A., Gaur P., Saini R., Shukla R., Kuhad R.C., 2019. Integrated Lignocellulosic Biorefinery for Sustainable Bio-Based Economy. In: Srivastava N., Srivastava M., Mishra P., Upadhyay S., Ramteke P., Gupta V. (eds) Sustainable Approaches for Biofuels Production Technologies. Biofuel and Biorefinery Technologies, vol 7. Springer, Cham.
  • [12] Zabed H., Sahu J.N., Boyce A.N., Faruq G., 2016. Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches. Renew. Sustain. Energy Rev., 66(C), 751-774.
  • [13] Balat M., 2011. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energ Convers. Manage., 52(2), 858-875.
  • [14] Chundawat S.P.S., Beckham G.T., Himmel M.E., Dale B.E., 2011. Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu. Rev. Chem. Biomol. Eng., 2, 121-45.
  • [15] Hernadez-Beltran J.U., Hernández-De Lira I.O., Cruz-Santos M.M., Saucedo-Luevanos A., Hernández-Terán F., Balagurusamy N., 2019. Insight into pretreatment methods of lignocellulosic biomass to increase biogas yield: Current state, challenges, and opportunities. Appl. Sci., 9, 3721. Doi:10.3390/app9183721.
  • [16] Li Y., Khanal S.K., 2017. Bioenergy: Principles and Applications. WILEY Blackwell, New Jersey.
  • [17] Mood S.H., Hossein Golfeshan A.H., Tabatabaei M., Jouzani G.S., Najafi G.H., Gholami M., Ardjmand M. 2013. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sustain. Energy Rev., 27, 77-93.
  • [18] Zoghlami A., Paës G., 2019. Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis. Front. Chem., 7, 874. Doi:10.3389/fchem.2019.00874.
  • [19] Mota T.R., Oliveira D.M., Rogério Marchiosi O., Ferrarese-Filho Santos W.D., 2018. Plant cell wall composition and enzymatic deconstruction. Bioengineering, 5, 63-77. Doi:10.3934/bioeng.2018.1.63.
  • [20] Agbor V.B., Cicek N., Sparling R., Berlin A., Levin D.B., 2011. Biomass pretreatment: fundamentals toward application. Biotechnol. Adv., 29, 675-685. Doi:10.1016/j.biotechadv.2011.05.005.
  • [21] Taherzadeh M.J., Karimi K. 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci., 9, 1621-1651.
  • [22] Ahorsu R., Medina F., Constantí M., 2018. Significance and challenges of biomass as a suitable feedstock for bioenergy and biochemical production: A review. Energies, 11, 3366-3372. Doi:10.3390/en11123366.
  • [23] Limayem A., Ricke S.C., 2012. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog. Energy Combust. Sci., 38, 449-467.
  • [24] Kumar A.K., Sharma S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour. Bioprocess., 4, 7. Doi:10.1186/s40643-017-0137-9.
  • [25] Rajendran K., Drielak E., Sudarshan Varma V., Muthusamy S., Kumar G., 2018. Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production - A review. Biomass Conv. Bioref., 8, 471-483. Doi:10.1007/s13399-017-0269-3.
  • [26] Chen H., Liu J., Chang X., Chen D., Xue Y., Liu P., Lin H., Han S., 2017. A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Processing Technology, 160(1), 196-206.
  • [27] Vasco-Correa J., Ge X., Li Y., 2016. Biological Pretreatment of Lignocellulosic Biomass. W: Mussato S.I. (eds), Biomass Fractionation Technologies for a Lignocellulosic Feed-stock Based Biorefinery. Elsevier, 561-585.
  • [28] Dahnum D., Tasum S.O., Triwahyuni E., Nurdin M., Abimanyu H., 2015. Comparison of SHF and SSF Processes Using Enzyme and Dry Yeast for Optimization of Bioethanol Production from Empty Fruit Bunch. Energy Procedia, 68, 107-116.
  • [29] Hawrot-Paw M., Koniuszy A., Zając G., Szyszlak-Bargłowicz J., Jaklewicz J., 2020. Production of 2nd generation bioethanol from straw during simultaneous microbial saccharification and fermentation. Arch. Environ. Prot., 46(1), 47-52.
  • [30] Koppram R., Nielsen F., Albers E., Lambert A., Wännström S., Welin L., Zacchi G., Olsson L., 2013. Simultaneous saccharification and co-fermentation for bioethanol production using corncobs at lab, PDU and demo scales. Biotechnology for Biofuels, 6, 2. Doi:10.1186/1754-6834-6-2.
  • [31] Scully S.M., Orlygsson J., 2015. Recent advances in second generation ethanol production by thermophilic bacteria, Energies, 8 (1), 1-30.
  • [32] Mejía-Barajas J.A., Alvarez-Navarrete M., Saavedra-Molina A., Campos-García J., Valenzuela-Vázquez U., Amaya-Delgado L., Arellano-Plaza M., 2018. Second-Generation Bioethanol Production through a Simultaneous Saccharification-Fermentation Process Using Kluyveromyces Marxianus Thermotolerant Yeast. In: Special Topics in Renewable Energy Systems, Yüksel E., Gök A., Eyvaz M., IntechOpen. Doi:10.5772/intechopen.78052.
  • [33] Mutturi S., Palmqvist B., Lidén G., 2014. Developments in bioethanol fuel-focused biorefineries. In: Advances in Biorefineries: Biomass and Waste Supply Chain Exploitation, Waldron K. (Ed.). Woodhead Publishing (2014), 259-302.
  • [34] Hassan S.S., Williams G.A., Jaiswal A.K., 2019. Lignocellulosic biorefineries in Europe: Current state and prospects. Trends Biotechnol., 37, 231-234. Doi:10.1016/j.tibtech.2018.07.002.
  • [35] Padella M., O’Connell A., Prussi M., 2019. What is still Limiting the Deployment of Cellulosic Ethanol? Analysis of the Current Status of the Sector. Appl. Sci., 9, 4523. Doi:10.3390/app9214523.
  • [36] Brown A., Waldheim L., Landälv I., Saddler J., Ebadian M., McMillan J. D., Bonomi A., Klein B., 2020. Advanced Biofuels - Potential for Cost Reduction. IEA Bioenergy, Task 41: 2020:01.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce8e25db-1534-4c6f-b3dd-5c7d935ffcb5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.