Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Presented work is focused on modelling of the phase transformation during laminar cooling after hot rolling of dual phase steel strips. Conventional FE model describing heat transfer was used in the macroscale. The model based on the solution of the diffusion equation with moving boundary was selected to predict properties of the steel based on phase transformations which occur in microscale. Preliminary observations indicated that results depend on various parameters of the model, such as: diffusion coefficient, boundary velocity factor and cooling rate. Therefore, sensitivity analysis of the model with respect to these parameters was performed in order to enhance the predictive capabilities of the model and to simplify further solution.
Czasopismo
Rocznik
Tom
Strony
186--192
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
- AGH University of Science and Technology, 30 Mickiewicza Avenue, 30-059 Krakow, Poland
autor
- AGH University of Science and Technology, 30 Mickiewicza Avenue, 30-059 Krakow, Poland
autor
- AGH University of Science and Technology, 30 Mickiewicza Avenue, 30-059 Krakow, Poland
autor
- AGH University of Science and Technology, 30 Mickiewicza Avenue, 30-059 Krakow, Poland
Bibliografia
- [1] H. Hofmann, D. Mattissen, T.W. Schaumann, Advanced cold rolled steels for automotive applications, Materialwissenschaft und Werkstofftechnik 37 (2006) 716–723. http://dx.doi.org/ 10.1002/mawe.200600057.
- [2] D.K. Matlock, J.G. Speer, Third generation of AHSS: microstructure design concepts, in: A. Haldar, S. Suwas, D. Bhattacharjee (Eds.), Microstructure and Texture in Steels, Springer, London, 2009 185–205.
- [3] M. Pietrzyk, R. Kuziak, Physical and numerical simulation of the manufacturing chain for the DP steel strips, in: Steel Research International, special edition conf. ICTP, 2011, 756–761.
- [4] M. Pietrzyk, R. Kuziak, K. Radwański, D. Szeliga, Physical and numerical simulation of the continuous annealing of DP steel strips, Steel Research International 85 (1) (2014) 99–111. http://dx.doi.org/10.1002/srin.201200318.
- [5] M. Pernach, M. Pietrzyk, Numerical solution of the diffusion equation with moving boundary applied to modelling of the austenite–ferrite phase transformation, Computational Materials Science 44 (2) (2008) 783–791. http://dx.doi.org/ 10.1016/j.commatsci.2008.05.035.
- [6] M. Pernach, K. Bzowski, M. Pietrzyk, Numerical modelling of phase transformation in DP steel after hot rolling and laminar cooling, International Journal for Multiscale Computational Engineering 12 (5) (2014) 397–410. http://dx. doi.org/10.1615/IntJMultCompEng.2014010450.
- [7] M. Pernach, K. Bzowski, M. Pietrzyk, Application of numerical solution of the diffusion equation to modelling phase transformation during heating of DP steels in the continuous annealing process, Computer Methods in Materials Science 12 (3) (2012) 183–196.
- [8] H.K.D.H. Bhadeshia, D.V. Edmonds, The mechanism of bainite formation in steels, Acta Metallurgica 28 (9) (1980) 1265–1273. http://dx.doi.org/10.1016/0001-6160(80)90082-6.
- [9] M. Militzer, Phase field modeling of microstructure evolution in steels, Current Opinion in Solid State and Materials Science 15 (6) (2011) 106–115. http://dx.doi.org/10.1016/j. cossms.2010.10.001.
- [10] E.R. Homera, V. Tikareb, E.A. Holmc, Hybrid Potts-phase field model for coupled microstructural–compositional evolution, Computational Materials Science 69 (2013) 414–423. http://dx. doi.org/10.1016/j.commatsci.2012.11.056.
- [11] J. Sietsma, Physical modelling the microstructure formation in advanced high-strength steels, Materials Science Forum 762 (2013) 194–209. http://dx.doi.org/10.4028/www.scientific. net/MSF.762.194.
- [12] R.G. Thiessen, J. Sietsma, T.A. Palmer, J.W. Elmer, I.M. Richardson, Phase-field modelling and synchrotron validation of phase transformations in martensitic dual-phase steel, Acta Materialia 55 (2) (2007) 601–614. http://dx. doi.org/10.1016/j.actamat.2006.08.053.
- [13] H. Cheng-Jiang, D.J. Browne, Phase-field model prediction of nucleation and coarsening during austenite/ferrite transformation in steels, Metallurgical and Materials Transactions A 37 (3) (2006) 589–598. http://dx.doi.org/ 10.1007/s11661-006-0031-0.
- [14] M. Pietrzyk, Ł. Madej, Ł. Rauch, R. Gołąb, Multiscale modelling of microstructure evolution during laminar cooling of hot rolled DP steel, Archives of Civil and Mechanical Engineering 10 (4) (2010) 57–67. http://dx.doi.org/10.1016/S1644-9665(12) 60031-4.
- [15] C. Halder, L. Madej, M. Pietrzyk, Discrete micro-scale cellular automata model for modelling phase transformation during heating of dual phase steels, Archives of Civil and Mechanical Engineering 14 (1) (2014) 96–103. http://dx.doi.org/10.1016/j. acme.2013.07.001.
- [16] W. Bangerth, R. Hartmann, G. Kanschat, Deal.II – a general-purpose object-oriented finite element library, ACM Transactions on Mathematical Software 33 (4) (2007) http:// dx.doi.org/10.1145/1268776.1268779.
- [17] W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, T.D. Young, The deal.II Library, Version 8.1, 2015, April 2 Retrieved from http://arxiv. org/abs/1312.2266v4.
- [18] W. Bangerth, G. Kanschat, R. Hartmann, O. Kayser-Herold, K. Kormann, M. Kronbichler, Reference Documentation for deal. II Version 8.1.0, 2015, April 2 Retrieved from https://www. dealii.org/8.1.0/doxygen/deal.II/classFE_Q.html.
- [19] M.D. Morris, Factorial sampling plans for preliminary computational experiments, Technometrics 33 (2) (1991) 161–174. http://dx.doi.org/10.2307/1269043.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce8d2b9b-01c4-4880-8a40-4bedd53544b6