Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Within 200 years since the industrial revolution manufacturing systems have often changed their faces. Emerging nations, new markets, new inventions and the changing needs of the society forced them to adapt. Until today, the arising challenges are immensely diverse: highly individualized products, decreasing manufacturing time, limited resources and critical ecological footprints are only a few of them. Oftentimes solutions for these issues and other future requirements can be found by interrogating nature. Applying knowledge of biological principles to industrial manufacturing processes is recently referred to as "biological transformation of manufacturing systems". Hereby three levels of a biological transformation are introduced, starting from inspiration over integration to the interaction of biological and technical systems. The paper illustrates the idea of biological transformation with specific examples for each level. On the inspiration-level the design of manufacturing systems with elements of natural ecosystems is described. Thus flexibility is increased, material cycles are closed and waste will be reduced. Furthermore the integration-level is illustrated by the use of microorganisms in cutting fluids. Finally, evolutionary computing within an automatic joining cell is shown as an example for the interaction-level.
Czasopismo
Rocznik
Tom
Strony
5--15
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
autor
- Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., München, Germany
autor
- Fraunhofer Institute for Machine Tools and Forming Technology IWU, Dresden, Germany
autor
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
autor
- Fraunhofer Institute for Machine Tools and Forming Technology IWU, Dresden, Germany
autor
- Fraunhofer Institute for Machine Tools and Forming Technology IWU, Dresden, Germany
Bibliografia
- [1] United Nations, Sustainable Development Goals, [Online] Available: www.sustainabledevelopment.un.org.
- [2] DIECKHOFF P., van ACKEREN J., 2018, Biologische Transformation und Bioökonomie, Whitepaper, Fraunhofer.
- [3] NEUGEBAUER R., HIPPMANN S., 2018, Biological Transformation: Drivers, Potentials and Challenges, FUTURAS in Res Conference, Biological Transformation of Manufacturing, 28–29.6.2018, Berlin.
- [4] KOREN Y., 2013, The global manufacturing revolution: Product-process-business integration and reconfigurable systems, Hoboken, N.J., Wiley.
- [5] BYRNE G., DIMITROV D., MONOSTORI L., TETI R., van HOUTEN F., WERTHEIM R., 2018, Biologicalisation: Biological transformation in manufacturing, CIRP Journal of Manufacturing Science and Technology, 21, 1–32.
- [6] BAUERNHANSL T., BRECHER C., DROSSEL W.-G., GUMBSCH P., HOMPEL M., WOLPERDINGER M., 2019, Biointelligenz – Eine neue Perspektive für nachhaltige industrielle Wertschöpfung – Ergebnisse der Voruntersuchung zur Biologischen Transformation zur Biologischen Transformation der industriellen Wertschöpfung, BIOTRAIN, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Aachen, Dortmund, Dresden, Freiburg, Stuttgart.
- [7] HELLMICH A., GLÄNZEL J., PIERER A., 2018, Analyzing and Optimizing the Fluidic Tempering of Machine Tool Frames, Conference on Thermal Issues in Machine Tools, Proceedings, Dresden, 195–210.
- [8] ISTIYANTO J., KIM M.Y., KO T.J., 2011, Profile characteristics of biomachined copper, Microelectronic Engineering, 88/8, 2614–2617.
- [9] HOCHENG H., CHANG J.H., HSU H.S., HAN H. J., CHANG Y.L., JADHAV U.U., 2012, Metal removal by Acidithiobacillus ferrooxidans through cells and extra-cellular culture supernatant in biomachining, CIRP Journal of Manufacturing Science and Technology, 5/2, 137–141.
- [10] MEYER D., REDETZKY M., BRINKSMEIER E., 2017, Microbial-based metalworking fluids in milling operations, CIRP Annals, 66/1, 129–132.
- [11] VDI Zentrum Ressourceneffizienz, 2017, Ökologische und ökonomische Bewertung des Ressourcenaufwands, VDI ZRE Studie, Wassermischbare Kühlschmierstoffe.
- [12] DEGEN F., 2018, Evolutionäre Selbstanpassung von komplexen Produktionsprozessen und Produkten, EVOLOPRO, Projektantrag Fraunhofer Leitprojekt.
- [13] CULLY A., CLUNE J., TARAPORE D., MOURET J.-B., 2015, Robots that can adapt like animals, Nature, 521, 503–507, https://doi.org/10.1038/nature14422.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce8b30f8-4c52-48ea-b2a1-29de520c3fe3