PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Preparation of slag-based foam concrete by chemical foaming for CO2 sequestration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Carbon dioxide emissions are among the most influential causes of global warming, and the recovery, capture, and comprehensive utilization of CO2 are the keys to carbon emissions reduction. High-porosity foam concrete was prepared using CaO as the alkali activator, and H2O2 as the foaming agent. Based on a single-factor experiment and response surface analysis, the best preparation condi-tions for foam concrete were obtained (water-to-cement ratio 0.4, alkali excitation dosage 10.73%, foaming agent dosage 8.26%). The porous material prepared under the optimal process conditions can achieve a CO2. sequestration performance of 91.59 kg/m3, and the actual sequestration capacity is con-sistent with the theoretical prediction value of 90.89 kg/m3. Mechanistic analysis shows that the precarbonation hydration products of foam concrete are mainly C-S-H gel, Ca(OH)2, and hydrotalcite-like compounds, which bond the slag particles together to form a three-dimensional spatially firmly con-nected structure. This study provides a reference for the application of alkaline solid waste materials in the field of carbon sequestration.
Rocznik
Strony
95--114
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Shandong Energy Group Company Limited, Jinan 250101, Shandong
autor
  • College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
autor
  • Shandong Energy Group Company Limited, Jinan 250101, Shandong.
autor
  • Shandong Energy Power Group Company Limited, Jinan 250014, Shandong
autor
  • Shandong Luxi Power Generation Company Limited, Jining 272000, Shandong
autor
  • Shandong Luxi Power Generation Company Limited, Jining 272000, Shandong
autor
  • College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
  • College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China,
autor
  • College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China,
autor
  • Shandong Energy Group Company Limited, Jinan 250101, Shandong.
Bibliografia
  • [1] ZHAO B., SUN L., QIN L., Optimization of China’s provincial carbon emission transfer structure under the dual constraints of economic development and emission reduction goals, Environ. Sci. Pollut. R., 2022, 29, 50335–50351. DOI: 10.1007/s11356-022-19288-7.
  • [2] TAMILSELVI DANANJAYAN R.R., KANDASAMY P., ANDIMUTHU R., Direct mineral carbonation of coal fly ash for CO2 sequestration, J. Clean. Prod., 2016, 112, 4173–4182. DOI: 10.1016/j.jclepro.2015.05.145.
  • [3] GAO P., YUE S., CHEN H., Carbon emission efficiency of China’s industry sectors: From the perspective of embodied carbon emissions, J. Clean. Prod., 2021, 283. DOI: 10.1016/j.jclepro.2020.124655.
  • [4] LIU Y., WU J., ZHANG C., CHEN Y., XIONG M., SHI R., LIN X., YU X., Thermodynamic and kinetic study of CO2 adsorption/desorptionon amine-functionalized sorbents, Indian J. Chem. Techn., 2019, 26 (6), 473–482. DOI: 10.56042/ijct.v26i6.21111.
  • [5] LEE S., BINNS M., KIM J., Automated process design and optimization of membrane-based CO2 capture for a coal-based power plant, J. Membr. Sci., 2018, 563, 820–834. DOI: 10.1016/j.memsci.2018.06.057.
  • [6] ZHANG W., JIN X., TU W., MA Q., MAO M., CUI C., Development of MEA-based CO2 phase change absorbent, Appl. Energ., 2017, 195, 316–323. DOI: 10.1016/j.apenergy.2017.03.050.
  • [7] LEUNG D.Y.C., CARAMANNA G., MAROTO-VALER M.M., An overview of current status of carbon di-oxide capture and storage technologies, Renew. Sust. Energ. Rev., 2014, 39, 426–443. DOI: 10.1016 /j.rser.2014.07.093.
  • [8] MO L., ZHANG F., PANESAR D K., DENG M., Development of low-carbon cementitious materials via carbonating Portland cement-fly ash-magnesia blends under various curing scenarios: a comparative study, J. Clean. Prod., 2017, 163, 252–261. DOI: 10.1016/j.jclepro.2016.01.066.
  • [9] XUE Q., ZHANG L., MEI K., WANG L., WANG Y., LI X., CHENG X., LIU H., Evolution of structural and mechanical properties of concrete exposed to high concentration CO2, Const. Build. Mater., 2022, 343, 128077. DOI: 10.1016/j.conbuildmat.2022.128077.
  • [10] PORTILLO E., ALONSO-FARINAS B., VEGA F., CANO M., NAVARRETE B., Alternatives for oxygen-selec-tive membrane systems and their integration into the oxy-fuel combustion process: A review, Sep. Purif. Technol., 2019, 229, 115708. DOI: 10.1016/j.seppur.2019.115708.
  • [11] POWER I.M., HARRISON A.L., DIPPLE G.M., WILSON S.A., KELEMEN P.B., HITCH M., SOUTHAM G., Carbon mineralization: From natural analogues to engineered systems, 2013, 77. 305–360. DOI: 10.2138/rmg. 2013.77.9.
  • [12] LI J., ZHAO S., SONG X., NI W., MAO S., DU H., ZHU S., JIANG F., ZENG H., DENG X., HITCH M., Carbonation curing on magnetically separated steel slag for the preparation of artificial reefs, Materials, 2022, 15 (6), 2055. DOI: 10.3390/ma15062055.
  • [13] BA H., LI J., NI W., LI Y., JU Y., ZHAO B., WEN G., HITCH M., Effect of calcium to silicon ratio on the microstructure of hydrated calcium silicate gels prepared under medium alkalinity, Constr. Build. Mater., 2023, 379, 131240. DOI: 10.1016/j.conbuildmat.2023.131240.
  • [14] JANG J.G., KIM G.M., KIM H.J., LEE H.K., Review on recent advances in CO2 utilization and sequestration technologies in cement-based materials, Constr. Build. Mater., 2016, 127, 762–773. DOI: 10.1016 /j.conbuildmat.2016.10.017.
  • [15] QIN L., GAO X., Recycling of waste autoclaved aerated concrete powder in Portland cement by accelerated carbonation, Waste Manage., 2019, 89, 254–264. DOI: 10.1016/j.wasman.2019.04.018.
  • [16] WANG X., NI W., LI J., ZHANG S., HITCH M., PASCUAL R., Carbonation of steel slag and gypsum for building materials and associated reaction mechanisms, Cem. Conc. Res., 2019, 125, 105893. DOI: 10.1016/j.cemconres.2019.105893.
  • [17] LI J., HITCH M., Mechanical activation of magnesium silicates for mineral carbonation. A review, Miner. Eng., 2018, 128, 69–83. DOI: 10.1016/j.mineng.2018.08.034.
  • [18] PARK B., CHOI Y.C., Investigation of carbon-capture property of foam concrete using stainless steel AOD slag, J. Clean. Prod., 2021, 288, 125621. DOI: 10.1016/j.jclepro.2020.125621.
  • [19] CORREA-SILVA M., MIRANDA T., ROUAINIA M., ARAUJO N., GLENDINNING S., CRISTELO N., Geomechanical behaviour of a soft soil stabilised with alkali-activated blast-furnace slags, J. Clean. Prod., 2020, 267, 122017. DOI: 10.1016/j.jclepro.2020.122017.
  • [20] TU Z., GUO M., POON C.S., SHI C., Effects of limestone powder on CaCO3 precipitation in CO2 cured cement pastes, Cem. Conc. Comp., 2016, 72, 9–16. DOI: 10.1016/j.cemconcomp.2016.05.019.
  • [21] ABDALQADER A.F., JIN F., AL-TABBAA A., Characterisation of reactive magnesia and sodium car-bonate-activated fly ash/slag paste blends, Const. Build. Mater., 2015, 93, 506–513. DOI: 10.1016 /j.conbuildmat.2015.06.015.
  • [22] DUAN W., LI G., WANG Z., WANG D., YU Q., ZHAN Y., Highly efficient production of hydrotalcite-like com-pounds from blast furnace slag, Appl. Clay Sci., 2022, 219, 106441. DOI: 10.1016/j.clay.2022.106441.
  • [23] ZHANG W., CHENG H., PENG S., LI D., GAO H., WANG D., Performance and mechanisms of wastewater sludge conditioning with slag-based hydrotalcite-like minerals (Ca/Mg/Al-LDH), Water Res., 2020, 169, 115265. DOI: 10.1016/j.watres.2019.115265.
  • [24] MOZTAHIDA M., LEE D.S., Photocatalytic degradation of methylene blue with P25/graphene/poly-acrylamide hydrogels: Optimization using response surface methodology, J. Hazard. Mater., 2020, 400, 123314. DOI: 10.1016/j.jhazmat.2020.123314.
  • [25] BAZRAFSHAN E., AL-MUSAWI T.J., SILVA M.F., PANAHI A.H., HAVANGI M., MOSTAFAPUR F.K., Photo-catalytic degradation of catechol using ZnO nanoparticles as catalyst: Optimizing the experimental parameters using the Box–Behnken statistical methodology and kinetic studies, Microchem. J., 2019, 147, 643–653. DOI: 10.1016/j.microc.2019.03.078.
  • [26] RAHIMI B., JAFARI N., ABDOLAHNEJAD A., FARROKHZADEH H., EBRAHIMI A., Application of efficient photocatalytic process using a novel BiVO/TiO-NaY zeolite composite for removal of acid orange 10 dye in aqueous solutions: Modeling by response surface methodology (RSM), J. Environ. Chem. Eng., 2019, 7 (4), 103253. DOI: 10.1016/j.jece.2019.103253.
  • [27] UMER M., TAHIR M., AZAM M.U., TASLEEM S., ABBAS T., MUHAMMAD A., Synergistic effects of single/multi-walls carbon nanotubes in TiO2 and process optimization using response surface methodology for photo-catalytic H2 evolution, J. Environ. Chem. Eng., 2019, 7 (5), 103361. DOI: 10.1016/j.jece.2019.103361.
  • [28] LIU S., SHEN Y., WANG Y., SHEN P., XUAN D., GUAN X., SHI C., Upcycling sintering red mud waste for novel superfine composite mineral admixture and CO2 sequestration, Cem. Concr. Comp., 2022, 129, 104497. DOI: 10.1016/j.cemconcomp.2022.104497.
  • [29] WANG D., FANG Y., ZHANG Y., CHANG J., Changes in mineral composition, growth of calcite crystal, and promotion of physicochemical properties induced by carbonation of β-C2S, J. CO2 Utiliz., 2019, 34, 149–162. DOI: 10.1016/j.jcou.2019.06.005.
  • [30] KIM M.S., JUN Y., LEE C., OH J.E., Use of CaO as an activator for producing a price-competitive non cement structural binder using ground granulated blast furnace slag, Cem. Concr. Res., 2013, 54, 208–214. DOI: 10.1016/j.cemconres.2013.09.011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce8ad04b-c2fc-4425-965e-01a322b8cc5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.