PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Odtwarzanie położenia wału dla prędkości zerowej w napędzie z PMSM z użyciem analizy głównych składowych

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Shaft position estimation for zero speed in a PMSM drive using principal component analysis
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono sposób odtwarzania położenia wału silnika synchronicznego z magnesami trwałymi z wykorzystaniem dodatkowego prądu wysokiej częstotliwości. Uzyskany hodograf tego prądu przetwarzany jest z użyciem analizy głównych składowych. Rezultatem przetwarzania jest informacja o poziomie dopasowania do poszczególnych wzorców. Wzorzec o najlepszym dopasowaniu określa odtworzone położenie wału maszyny. Badania zostały przeprowadzone z użyciem danych pomiarowych laboratoryjnego układu napędowego z PMSM.
EN
This paper presents a method of estimating the shaft position of a permanent magnet synchronous motor using an additional high-frequency current. The resulting hodograph of this current is processed using principal component analysis. The result of the processing is information about the level of fit to individual patterns. The pattern with the best match determines the estimated shaft position. The research was carried out using measurement data of a laboratory drive with a PMSM.
Rocznik
Strony
237--242
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
  • Instytut Robotyki i Inteligencji Maszynowej, Politechnika Poznańska, Pl. Marii Skłodowskiej - Curie 5, 60-965 Poznań
  • Instytut Robotyki i Inteligencji Maszynowej, Politechnika Poznańska, Pl. Marii Skłodowskiej - Curie 5, 60-965 Poznań
Bibliografia
  • [1] Baek S.-W. and Lee S. W., “Design optimization and experimental verification of permanent magnet synchronous motor used in electric compressors in electric vehicles,” Applied Sciences, vol. 10, no. 9, 2020. [web page] https://www.mdpi.com/2076-3417/10/9/3235
  • [2] Qiu Z., Chen Y., Lin X., Cheng H., Kang Y., and Liu X., “Hybrid carrier frequency modulation based on rotor position to reduce sideband vibro-acoustics in pmsm used by electric vehicles,” World Electric Vehicle Journal, vol. 12, no. 3, 2021. [web page] https://www.mdpi.com/2032-6653/12/3/100
  • [3] Łebkowski A., “Design, analysis of the location and materials of neodymium magnets on the torque and power of in-wheel external rotor pmsm for electric vehicles,” Energies, vol. 11, no. 9, 2018. [web page] https://www.mdpi.com/1996-1073/11/9/2293
  • [4] Vas P., Sensorless Vector and Direct Torque Control, ser. Monographs in electrical and electronic engineering. Oxford; New York: Oxford University Press, 1998, no. 42.
  • [5] Siwek P. and Urbanski K., “Improvement of the Torque Control Dynamics of the PMSM Drive Using the FOC-Controlled Simple Boost QZSDMC Converter,” in 2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR). Miedzyzdroje: IEEE, Aug. 2018, pp. 29–34. [web page] https://ieeexplore.ieee.org/document/8486123/
  • [6] Wang Z., Lu Q., Ye Y., Lu K., and Fang Y., “Investigation of PMSM Back-EMF Using Sensorless Control with Parameter Variations and Measurement Errors,” Przeglad Elektrotechniczny, vol. 88, no. 8, pp. 182–186, 2012.
  • [7] Nair S. V., Hatua K., Prasad N. V. P. R. D., and Reddy D. K., “A Quick I-f Starting of PMSM Drive With Pole Slipping Prevention and Reduced Speed Oscillations,” IEEE Transactions on Industrial Electronics, vol. 68, no. 8, pp. 6650–6661, Aug. 2021. [web page] https://ieeexplore.ieee.org/document/9130898/
  • [8] Corley M. J. and Lorenz R. D., “Rotor position and velocity estimation for a salient-pole permanent magnet synchronous machine at standstill and high speeds,” Industry Applications, IEEE Transactions on, vol. 34, no. 4, pp. 784–789, 1998.
  • [9] Schroedl M., “Sensorless control of AC machines at low speed and standstill based on the “INFORM” method,” in , Conference Record of the 1996 IEEE Industry Applications Conference, 1996. Thirty-First IAS Annual Meeting, IAS ’96, vol. 1. IEEE, Oct. 1996, pp. 270–277 vol.1.
  • [10] Zentai A. and Daboczi T., “Improving INFORM calculation method on permanent magnet synchronous machines,” in IEEE Instrumentation and Measurement Technology Conference Proceedings, 2007. IMTC 2007. IEEE, May 2007, pp. 1–6.
  • [11] Abry F., Zgorski A., Lin-Shi X., and Retif J. M., “Sensorless position control for SPMSM at zero speed and acceleration,” in Proceedings of the 2011-14th European Conference on Power Electronics and Applications (EPE 2011). IEEE, 2011, pp. 1–9.
  • [12] Urbanski K. and Janiszewski D., “Position estimation at zero speed for PMSMs using artificial neural networks,” Energies, vol. 14, no. 23, 2021. [web page] https://www.mdpi.com/1996-1073/14/23/8134
  • [13] Turk M. and Pentland A., “Eigenfaces for Recognition,” Journal of Cognitive Neuroscience, vol. 3, no. 1, pp. 71–86, Jan. 1991.
  • [14] Dagher I. and Nachar R., “Face recognition using IPCA-ICA algorithm,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 6, pp. 996–1000, Jun. 2006. [web page] http://ieeexplore.ieee.org/document/1624362/
  • [15] He R., Hu B., Zheng W., and Kong X., “Robust Principal Component Analysis Based on Maximum Correntropy Criterion,” IEEE Transactions on Image Processing, vol. 20, no. 6, pp. 1485–1494, Jun. 2011. [web page] http://ieeexplore.ieee.org/document/5680649/
  • [16] Siwek K. and Osowski S., “Autoencoder versus PCA in face recognition,” in 2017 18th International Conference on Computational Problems of Electrical Engineering (CPEE). Kutna Hora: IEEE, Sep. 2017, pp. 1–4. [web page] http://ieeexplore.ieee.org/document/8093043/
  • [17] Rondon C. V. N., Carvajal D. A. C., Delgado B. M., Casadiego S. A. C., and Ibarra D. G., “Component Dimensionality Reduction in Dermoscopic Images using a Machine Learning Technique with Validation By Similarity Metrics,” in 2022 IEEE 7th International conference for Convergence in Technology (I2CT). Mumbai, India: IEEE, Apr. 2022, pp. 1–6. [web page] https://ieeexplore.ieee.org/document/9824665/
  • [18] Matzen T. N. and Rasmussen P. O., “Modelling magnetic saturation effects in IPMSMs for use in sensorless saliency based methods,” in 2007 European Conference on Power Electronics and Applications, Sep. 2007, pp. 1–8.
  • [19] Beltran-Pulido A., Aliprantis D., Bilionis I., Munoz A. R., Leonardi F., and Avery S. M., “Uncertainty Quantification and Sensitivity Analysis in a Nonlinear Finite-Element Model of a Permanent Magnet Synchronous Machine,” IEEE Transactions on Energy Conversion, vol. 35, no. 4, pp. 2152–2161, Dec. 2020. [web page] https://ieeexplore.ieee.org/document/9115850/
  • [20] Vieira P., Bobi M. A. S., Gomes C. R., Gomes H. S., and Nascimento M. P. d., “Vibration monitoring of electric generators without sensor dedicated,” in 2010 IEEE International Conference on Industrial Technology, Mar. 2010, pp. 451–456.
  • [21] Ebrahimi B. M., Roshtkhari M. J., Faiz J., and Khatami S. V., “Advanced Eccentricity Fault Recognition in Permanent Magnet Synchronous Motors Using Stator Current Signature Analysis,” IEEE Transactions on Industrial Electronics, vol. 61, no. 4, pp. 2041–2052, Apr. 2014.
  • [22] Cattell R. B., “The scree test for the number of factors,” Multivariate behavioral research, vol. 1, no. 2, pp. 245–276, 1966.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce8935aa-6dd6-476a-a267-5595cf38efe2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.