PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rheological studies of high-density fracturing fluid using high-density brine and carboxymethyl hydroxypropyl guar (CMHPG) for high-temperature well condition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This work investigated carboxymethyl hydroxypropyl guar (CMHPG) as a potential base polymer for a fracturing fluid used in deep tight gas wells, synonym to high-temperature reservoirs. Fracturing is a common method to improve oil production by creating fractures in potentially productive reservoirs using fracturing fluids. Fracturing fluids are typically composed of water, sand, proppant, and many different additives to alter the capabilities of the fluid. Design/methodology/approach: A stable high-density fracturing fluid (HDFF) was developed to cope with scorching good temperatures up to 350°F (177°C)as well as to reduce the surface treating pressure. The HDFF consists of NaBr heavy brine, CMHPG, clay stabilizers, and zirconium and borate crosslinkers. A linear gel fluid was prepared by combining NaBr brine with CMHPG before adding the additives. The resulting fluid was then tested using a high-pressure, high-temperature (HPHT) rheometer. Findings: The results showed that the performance of the HDFF was optimum in an alkaline environment between pH 10 to 12. The efficiency of zirconium and borate crosslinkers were optimum at 0.7 ppm and 1.5 ppt, respectively. Concentrations higher than these values are not only uneconomical but will cause the fluid to be overly crosslinked, consequently reducing efficiency. In actual field operation, this is disastrous when the fluid does not flow to the fracturing column but instead swirls around the drill string as the drill string rotates. On the other hand, a reduction of concentration below the optimum values can cause fluid instability at high temperature reservoirs. Research limitations/implications: The study was limited to using two different kinds of crosslinkers and various concentrations. Future studies can be conducted using other kinds of crosslinkers, as well as an investigation into the effects of varying temperatures, pressures, and pH on the HDFF using CMHPG. Practical implications: It can be concluded that HDFF using CMHPG as the base polymer can be a potential use in formulating fracturing fluids. Originality/value: Information on the rheological behaviour of HDFF using NaBr and CMHPG can provide a reference point for future scientists in developing a new formulation of fracturing fluid.
Rocznik
Strony
49--59
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
  • School of Chemical Engineering, College of Engineering, University of Technology MARA, 40450 Shah Alam, Selangor, Malaysia
autor
  • School of Chemical Engineering, College of Engineering, University of Technology MARA, 40450 Shah Alam, Selangor, Malaysia
  • Key Laboratory of Continental Shale Hydrocarbon Accumulation and Efficient Development, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China
autor
  • PCE, University of Technology Brunei, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
Bibliografia
  • [1] L. Sierra, New high-density fracturing fluid to stimulate a high-pressure, high-temperature tight-gas sandstone producer formation in Saudi Arabia, Proceedings of the SPE Deep Gas Conference and Exhibition, Manama, Bahrain, 2010, SPE-130236-MS. DOI: https://doi.org/10.2118/130236-ms
  • [2] S. Shahnazar, N. Hasan, Gas hydrate formation condition: Review on experimental and modeling approaches, Fluid Phase Equilibria 379 (2014) 72-85. DOI: https://doi.org/10.1016/j.fluid.2014.07.012
  • [3] M.A. Ishak, M.A. Islam, M.R. Shalaby, N. Hasan, The application of seismic attributes and wheeler transformations for the geomorphological interpretation of stratigraphic surfaces: A case study of the F3 block, Dutch offshore sector, North Sea, Geosciences 8/3 (2018) 79. DOI: https://doi.org/10.3390/geosciences8030079
  • [4] T. AlMubarak, M. AlKhaldi, A. AlGhamdi, Design and application of high temperature seawater based fracturing fluids in Saudi Arabia, Proceedings of the Offshore Technology Conference Asia, Kuala Lumpur, Malaysia, 2016, OTC-26822-MS. DOI: https://doi.org/10.4043/26822-ms
  • [5] T. Almubarak, L. Li, J.H. Ng, H. Nasr-El-Din, M. AlKhaldi, New insights into hydraulic fracturing fluids used for high-temperature wells, Petroleum 7/1 (2021) 70-79. DOI: https://doi.org/10.1016/j.petlm.2020.05.002
  • [6] M.E. Mohyaldinn, M.C. Ismail, N. Hasan, A Correlation to Predict Erosion Due to Sand Entrainment in Viscous Oils Flow Through Elbows, in: M. Awang, S. Emamian, F. Yusof (eds), Advances in Material Sciences and Engineering. Lecture Notes in Mechanical Engineering, Springer, Singapore, 2020, 287-297. DOI: https://doi.org/10.1007/978-981-13-8297-0_31
  • [7] M.E. Mohyaldinn, H. Husin, N. Hasan, M. M.B. Elmubarak, A. M.E. Genefid, M. E.A. Dheeb, Challenges during Operation and Shutdown of Waxy Crude Pipelines, in: R.M. Gounder (ed), Processing of Heavy Crude Oils - Challenges and Opportunities, IntechOpen, London, 2019. DOI: https://doi.org/10.5772/intechopen.89489
  • [8] K. Bartko, C. Arocha, T.S. Mukherjee, L. Sierra, J. Terracina, P. Lord, First application of high density fracturing fluid to stimulate a high pressure & high temperature tight gas producer sandstone formation of Saudi Arabia, Proceedings of the SPE Hydraulic Fracturing Technology Conference, The Woodlands, Texas, 2009, SPE-118904-MS. DOI: https://doi.org/10.2118/118904-ms
  • [9] M.T.A.M. Zene, N. Hasan, J. Ruizhong, G. Zhenliang, Volumetric estimation and OOIP calculation of the Ronier4 block of Ronier oilfield in the Bongor basin, Chad, Geomechanics and Geophysics for Geo-Energy and Geo-Resources 5 (2019) 371-381. DOI: https://doi.org/10.1007/s40948-019-00117-0
  • [10] M.T.A.M. Zene, N. Hasan, J. Ruizhong, G. Zhenliang, C. Trang, Geological modeling and upscaling of the Ronier 4 block in Bongor basin, Chad, Journal of Petroleum Exploration and Production Technology 9 (2019) 2461-2476. DOI: https://doi.org/10.1007/s13202-019-0712-z
  • [11] N. Abdullah, N. Hasan, N. Saeid, M.E. Mohyaldinn, E.S.M.M. Zahran, The study of the effect of fault transmissibility on the reservoir production using reservoir simulation—Cornea Field, Western Australia, Journal of Petroleum Exploration and Production Technology 10 (2020) 739-753. DOI: https://doi.org/10.1007/s13202-019-00791-6
  • [12] J. Bellarby, Well Completion Design, First Edition, Elsevier Science, Amsterdam, 2009.
  • [13] S.M. Yusuf, R. Junin, M.A. Muhamad Sidek, A. Agi, M.F.I. Ahmad Fuad, N.R. Rosli, N.A. Rahman, E. Yahya, N.A. Muhamad Soffian Wong, M.H. Mustaza, Screening the synergy of sodium dodecylbenzenesulfonate and carboxymethyl cellulose for surfactant-polymer flooding, Petroleum Research 7/3 (2022) 308-317. DOI: https://doi.org/10.1016/J.PTLRS.2021.11.002
  • [14] A. Wilson, A Comparison Between Seawater-Based and Freshwater-Based Fracturing Fluids, Journal of Petroleum Technology 69/03 (2017) 46-47. DOI: https://doi.org/10.2118/0317-0046-jpt
  • [15] M. Alohaly, A. Binghanim, R. Rahal, S. Rahim, Seawater fracturing fluid development challenges: A comparison between seawater-based and freshwater-based fracturing fluids using two types of guar gum polymers, Proceedings of the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, Saudi Arabia, 2016, SPE-182799-MS. DOI: https://doi.org/10.2118/182799-ms
  • [16] K. Zhang, G. Zhang, Z. Li, J. Hou, Laboratory Evaluation of a Low pH and Low Polymer Concentration Zirconium-CMHPG Gel System for Hydraulic Fracturing, Energy and Fuels 33/10 (2019) 9720-9735. DOI: https://doi.org/10.1021/acs.energyfuels.9b02419
  • [17] R.M. Yamak, H.A. Nasr-El-Din, S. Rahim, A. BinGhanim, Rheology studies of crosslinked fracturing fluids utilizing seawater, Proceedings of the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, Saudi Arabia, 2018, SPE-192275-MS. DOI: https://doi.org/10.2118/192275-ms
  • [18] L. Li, G.A. Al-Muntasheri, F. Liang, A review of crosslinked fracturing fluids prepared with produced water, Petroleum 2/4 (2016) 313-323. DOI: https://doi.org/10.1016/j.petlm.2016.10.001
  • [19] B.R. Reddy, F. Liang, L. Li, Fracturing fluids comprising alkanolamine borates as crosslinkers for polysaccharides, Patent US10544347B2, 2017.
  • [20] S. Al-Hajri, B. M. Negash, M. Motiur Rahman, M. Haroun, T. M. Al-Shami, Perspective Review of Polymers as Additives in Water-Based Fracturing Fluids, ACS Omega 7/9 (2022) 7431-7443. DOI: https://doi.org/10.1021/acsomega.1c06739
  • [21] A. Ellafi, H. Jabbari, O.S. Tomomewo, M.D. Mann, M.B. Geri, C. Tang, Future of Hydraulic Fracturing Application in Terms of Water Management and Environmental Issues: A Critical Review, Proceedings of the SPE Canada Unconventional Resources Conference, Virtual, 2020, SPE-199993-MS. DOI: https://doi.org/10.2118/199993-ms
  • [22] G. Biheri, A. Imqam, Proppant Transport by High Viscosity Friction Reducer and Guar Linear Gel-Based Fracture Fluids, Proceedings of the 54th U.S. Rock Mechanics/Geomechanics Symposium, physical event cancelled, 2020, ARMA-2020-1221.
  • [23] J.A. Delorey, R.S. Taylor, Delayed crosslinking improves performance of fracturing fluids in deep formations, Proceedings of the Annual Technical Meeting, Edmonton, Alberta, 1985, PETSOC-85-36- 39. DOI: https://doi.org/10.2118/85-36-39
  • [24] R. Jeffrey, J. McLennan, A.P. Bunger, Effective and Sustainable Hydraulic Fracturing, IntechOpen, Rijeka, 2013. DOI: https://doi.org/10.5772/45724
  • [25] G.S. Beavers, D.D. Joseph, Novel Weissenberg effects, Journal of Fluid Mechanics 81/2 (1977) 265-272. DOI: https://doi.org/10.1017/S002211207700202X
  • [26] B.Z. Bobrovsky, D.J. Shlien, A. Brosh, G. Kleinstein, Weissenberg effect in Newtonian liquids, Physics of Fluids 22/4 (1979) 781. DOI: https://doi.org/10.1063/1.862658
  • [27] A.P. Yong, Md.A. Islam, N. Hasan, The Effect of pH and High-Pressure Homogenization on Droplet Size, International Journal of Engineering Materials and Manufacture 2/4 (2017) 110-122. DOI: https://doi.org/10.26776/ijemm.02.04.2017.05
  • [28] E.C. Henry, N.W. Taylor, Acid and base binding capacities and viscosity relations in certain whiteware clays, Journal of the American Ceramic Society 21/5 (1938) 165-175. DOI: https://doi.org/10.1111/j.1151- 2916.1938.tb15759.x
  • [29] J.E. Elliott, M. MacDonald, J. Nie, C.N. Bowman, Structure and swelling of poly(acrylic acid) hydrogels: Effect of pH, ionic strength, and dilution on the crosslinked polymer structure, Polymer 45/5 (2004) 1503-1510. DOI: https://doi.org/10.1016/j.polymer.2003.12.040
  • [30] D. Saini, T. Mezei, Potential Use of Oil-Field Produced Water as Base Fluid for Hydraulic Fracturing Operations: Effect of Water Chemistry on Crosslinking and Breaking Behaviors of Guar Gum-Based Fracturing Fluid Formulations, Proceedings of the SPE Western Regional Meeting, Bakersfield, California, 2017, SPE-185693-MS. DOI: https://doi.org/10.2118/185693-MS
  • [31] Y. Shao, J. Mao, B. Yang, J. Zhao, X. Yang, High Performance Hydrophobic Associated Polymer for Fracturing Fluids with Low-Dosage, Petroleum Chemistry 60 (2020) 219-225. DOI: https://doi.org/10.1134/S0965544120020115
  • [32] S.M. Al-Driweesh, A.A. Dashash, A.R. Malik, J. Leal, E. Soriano, A. Lopez, Overcoming Hydraulic Fracturing Challenges in High Temperature and Tight Gas Reservoirs of Saudi Arabia with an Enhanced Fracturing Fluid System, Proceedings of the International Petroleum Technology Conference, Doha, Qatar, 2014, IPTC-17686-MS. DOI: https://doi.org/10.2523/IPTC-17686-MS
  • [33] H. Xu, F. Zhou, Y. Li, Z. Chen, E. Yao, Development and evaluation of a novel high-density weighted fracturing fluid in ultra-deep reservoirs, IOP Conference Series: Earth and Environmental Science 984 (2022) 012015. DOI: https://doi.org/10.1088/1755- 1315/984/1/012015
  • [34] Z. Yang, F. Liu, L. Song, L. Lin, A New Fracturing Fluid with Temperature Resistance of 230°C, Drilling Fluid and Completion Fluid 35/1 (2018) 101-104. DOI: https://doi.org/10.3969/j.issn.1001-5620.2018.01.019
  • [35] F. Liang, B.R. Reddy, L. Li, G.A. Al-Muntasheri, High temperature crosslinked fracturing fluids, Patent US10640700B2, 2020.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce885b1e-fad1-4163-9ad8-ca5df60c1520
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.