PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Above Ground Carbon Stock across Different Land Use Types in Central Kalimantan Indonesia – First Step Toward Redd Implementation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Climate change is one of the most critical threats to the human population and other living organisms on Earth. REDD+ is developed as a mechanism to acquire a global fund for addressing climate change, deforestation, and protecting the forest ecosystem while maintaining the livelihood of local communities. As a response to the need for carbon stock measurement at the specific forest and land-use types, this research aimed to estimate the aboveground carbon stock at seven land-use types in KPHP (Forest management unit) Katingan Hulu Central Kalimantan Indonesia. This research was conducted from May to September 2019. The data collected in 91 observation plots included diameter at breast height, total height, and fresh weight of understory vegetation and litter. Using an allometric equation, this research estimated the above-ground carbon stock in trees, understory vegetation, and litter. It was found that AGC varied across different land-use types: secondary peat forest 135.30 Mg C/Ha, secondary forest 212.19 Mg C/Ha, shrub 47.41 Mg C/Ha, oil palm plantation 73.76 Mg C/Ha, rubber plantation 65.56 Mg C/Ha, and forest with rattan 75.98 Mg C/Ha. It was concluded that AGC in KPHP Katingan Hulu varied according to the type of land use system. The forests with less human intervention, such as secondary forests, had higher AGC compared with highly disturbed forests such as shrubs. The findings from this research could help decision-makers to develop the REDD programs to rehabilitate forests and contribute to community development.
Rocznik
Strony
170--180
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
  • Department of Forestry, Faculty of Agriculture, University of Palangka Raya, Jl. Yos Sudarso Kampus Tunjung Nyaho, Palangka Raya 73111A, Indonesia
  • Center For The Study of Climate Change and Low-Carbon Development, LPPM University of Palangka Raya. Jalan H. Timang Kampus UPR Tunjung Nyaho Palangka Raya 73112, Indonesia
  • WWF Indonesia, Central Kalimantan Jl. G.Obos XIV No. 19B, Palangka Raya 73111, Indonesia
autor
  • WWF Indonesia, Central Kalimantan Jl. G.Obos XIV No. 19B, Palangka Raya 73111, Indonesia
Bibliografia
  • 1. Abdul Qirom, M., Wira Yuwati, T., Penelitian dan Pengembangan Lingkungan Hidup dan Kehutanan Banjarbaru Jl Ahmad Yani Km, B., Manggis, G., Ulin, L., & Selatan, B.-K. (2021). The carbon stock as indicator of peatland recovery after fire in Central Kalimantan, 108-122. https://doi.org/10.20886/GLM.2021.1.2.108-122.
  • 2. Afentina, McShane, P., & Wright, W. (2020). Ethnobotany, rattan agroforestry, and conservation of ecosystem services in Central Kalimantan, Indonesia. Agroforestry Systems, 94(2), 639-650. https://doi.org/10.1007/s10457-019-00428-x
  • 3. Angelsen, A., Martius, C., de Sy, V., Duchelle, A. E., Larson, A. M., & Pham, T. T. (2018). Transforming REDD+: lessons and new directions. 1-303.
  • 4. Asner, G. P., Brodrick, P. G., Philipson, C., Vaughn, N. R., Martin, R. E., Knapp, D. E., Heckler, J., Evans, L. J., Jucker, T., Goossens, B., Stark, D. J., Reynolds, G., Ong, R., Renneboog, N., Kugan, F., & Coomes, D. A. (2018). Mapped aboveground carbon stocks to advance forest conservation and recovery in Malaysian Borneo. Biological Conservation, 217, 289-310. https://doi.org/10.1016/j.biocon.2017.10.020.
  • 5. Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M., Sulla-Menashe, D., Hackler, J., Beck, P. S. A., Dubayah, R., Friedl, M. A., Samanta, S., & Houghton, R. A. (2012). Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Climate Change, 2(3),182–18. https://doi.org/10.1038/nclimate1354
  • 6. Basuki, T. M., van Laake, P. E., Skidmore, A. K., & Hussin, Y. A. (2009). Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management, 257(8), 1684 – 1694. https://doi.org/10.1016/j.foreco.2009.01.027
  • 7. Brofeldt, S., Theilade, I., Burgess, N. D., Danielsen, F., Poulsen, M. K., Adrian, T., Bang, T. N., Budiman, A., Jensen, J., Jensen, A. E., Kurniawan, Y., Lægaard, S. B. L., Mingxu, Z., van Noordwijk, M., Rahayu, S., Rutishauser, E., Schmidt-Vogt, D., Warta, Z., & Widayati, A. (2014). Community monitoring of carbon stocks for REDD+: Does accuracy and cost change over time? Forests, 5(8), 1834-1854. https://doi.org/10.3390/f5081834
  • 8. Brown, M. I. (2013). Redeeming REDD: Policies, incentives, and social feasibility for avoided deforestation. In Redeeming REDD: Policies, Incentives and Social Feasibility for Avoided Deforestation. 1-344. https://doi.org/10.4324/9780203123652
  • 9. Brown, S., & Lugo, A. E. (1982). The Storage and Production of Organic Matter in Tropical Forests and Their Role in the Global Carbon Cycle. Biotropica, 14(3), 161-187. https://doi.org/10.2307/2388024
  • 10. Brown Sandra. (1997). Estimating Biomass and Biomass Change of Tropical Forests: a Primer (FAO Forestry Paper-134). 134 FAO- Food and Agriculture Organization of the United Nations, November.
  • 11. Central Statistic Agency. (2021). Katingan Regency in Figure. 1-105
  • 12. Convention on Biological Diversity. (2011). “Strategic plan for biodiversity 2011–2020 and the Aichi Targets.”1-2.
  • 13. Darmawan, A., Warta, Z., Molidena, E., Valla, A., Firdaus, M. I., Winarno, G. D., Winarno, B., Rusolono, T., & Tsuyuki, S. (2022). Aboveground Forest Carbon Stock in Protected Area: A Case Study of Bukit Tigapuluh National Park, Indonesia. Journal of Tropical Biodiversity and Biotechnology, 7(1),1-26. https://doi.org/10.22146/JTBB.64827
  • 14. Deguignet, M., Arnell, A., Juffe-Bignoli, D., Shi, Y., Bingham, H., MacSharry, B., & Kingston, N. (2017). Measuring the extent of overlaps in protected area designations. PLoS ONE, 12(11),1-17. https://doi.org/10.1371/journal.pone.0188681
  • 15. Dharmawan, I. W. S., Samsoedin, & Siregar. (2010). The dyniamic of biomass and carbon on ex logging landscape. Jurnal Penelitian Hutan, 12-20.
  • 16. Djalante, R., Jupesta, J., & Aldrian, E. (2021). Correction to: Climate change research, policy and actions in indonesia (springer climate, 10.1007/978-3-030-55536-8). In Springer Climate (pp. C1–C5). 203-228. Springer Science and Business Media B.V.https://doi.org/10.1007/978-3-030-55536-8_16
  • 17. Dwisatrio B. (2021). Results-based payments in Indonesia: a strategy to move REDD+ forward. https://forestsnews.cifor.org/70458/results-based-payments-in-indonesia-a-strategy-to-move-redd-forward?fnl=en
  • 18. Enrici, A. M., & Hubacek, K. (2018). Challenges for REDD+ in Indonesia: A case study of three project sites. Ecology and Society, 23(2):1-19. https://doi.org/10.5751/ES-09805-230207
  • 19. Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., ... Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478(7369)., 337-342. https://doi.org/10.1038/nature10452
  • 20. Gardner, T. A., Burgess, N. D., Aguilar-Amuchastegui, N., Barlow, J., Berenguer, E., Clements, T., Danielsen, F., Ferreira, J., Foden, W., Kapos, V., Khan, S. M., Lees, A. C., Parry, L., Roman-Cuesta, R. M., Schmitt, C. B., Strange, N., Theilade, I., & Vieira, I. C. G. (2012). A framework for integrating biodiversity concerns into national REDD+ programmes. Biological Conservation, 154, 61-71. https://doi.org/10.1016/j.biocon.2011.11.018
  • 21. Hansen, M. C., Stehman, S. v., Potapov, P. v., Arunarwati, B., Stolle, F., & Pittman, K. (2009). Quantifying changes in the rates of forest clearing in Indonesia from 1990 to 2005 using remotely sensed data sets. Environmental Research Letters, 4(3), 1-12. https://doi.org/10.1088/1748-9326/4/3/034001
  • 22. Harada, K., Prabowo, D., Aliadi, A., Ichihara, J., & Ma, H. O. (2015). How can social safeguards of REDD+ function effectively conserve forests and improve local livelihoods? A case from Meru Betiri National Park, East Java, Indonesia. Land, 4(1), 119-139. https://doi.org/10.3390/land4010119
  • 23. HASHIMOTO, T., TANGE, T., MASUMORI, M., YAGI, H., SASAKI, S., & KOJIMA, K. (2004). Allometric equations for pioneer tree species and estimation of the aboveground biomass of a tropical secondary forest in East Kalimantan. Tropics, 14(1), 123-130. https://doi.org/10.3759/tropics.14.123
  • 24. Houghton, R. A. (2000). Interannual variability in the global carbon cycle. Journal of Geophysical Research Atmospheres, 105(D15), 2-121-2-130. https://doi.org/10.1029/2000JD900041
  • 25. Indonesia National Standard. (2011). Ground Base Forest Carbon Accounting. 5-17.
  • 26. IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 4 Agriculture, Forestry and Other Land Use Chapter 4 forest land 2006. Forestry, 4(2), 41-124.
  • 27. Krisnawati H, Adinugroho WC, Imanuddin R, & Hutabarat S. (2014). Estimation of forest biomass for quantifying CO2 emissions in Central Kalimantan: a comprehensive approach in deter- mining forest carbon emission factors.1-60.
  • 28. Lorenz, K., & Lal, R. (2010). Carbon sequestration in forest ecosystems. In Carbon Sequestration in Forest Ecosystems. 207-239. https://doi.org/10.1007-978-90-481-3266-9.
  • 29. Manuri, S., Brack, C., Noor’an, F., Rusolono, T., Anggraini, S. M., Dotzauer, H., & Kumara, I. (2016). Improved allometric equations for tree aboveground biomass estimation in tropical dipterocarp forests of Kalimantan, Indonesia. Forest Ecosystems, 3(1), 1-10. https://doi.org/10.1186/s40663-016-0087-2
  • 30. Marshall, A. R., Willcock, S., Platts, P. J., Lovett, J. C., Balmford, A., Burgess, N. D., Latham, J. E., Munishi, P. K. T., Salter, R., Shirima, D. D., & Lewis, S. L. (2012). Measuring and modelling above-ground carbon and tree allometry along a tropical elevation gradient. Biological Conservation, 154, 20-33. https://doi.org/10.1016/j.biocon.2012.03.017
  • 31. MEA. (2005). Millennium Ecosystem Assessment: Ecosystems and Human Well-being: Desertification Synthesis. World Resources Institute.1-36.
  • 32. Ministry od Forestry and Environment. (2018). Profil of KPH. Ministry of Forestry and Environment. 1-45.
  • 33. Mohd Zaki, N. A., Latif, Z. A., & Suratman, M. N. (2018). Modelling above-ground live trees biomass and carbon stock estimation of tropical lowland Dipterocarp forest: integration of field-based and remotely sensed estimates. In International Journal of Remote Sensing (Vol. 39, Issue 8), 2312-2340. https://doi.org/10.1080/01431161.2017.1421793
  • 34. NOAA. (2016). Carbon Dioxide Levels Race past Troubling Milestone. https://research.noaa.gov/article/ArtMID/587/ArticleID/314/Carbon-dioxide-levels-race-past-troubling-milestone
  • 35. Oldekop, J. A., Sims, K. R. E., Karna, B. K., Whittingham, M. J., & Agrawal, A. (2019). Reductions in deforestation and poverty from decentralized forest management in Nepal. Nature Sustainability, 2(5), 421-428. https://doi.org/10.1038/s41893-019-0277-3
  • 36. Pham, T.T., Moeliono, M., Yuwono, J., Dwisatrio, B., & Gallo, P. (2021). REDD+ finance in Brazil, Indonesia and Vietnam: Stakeholder perspectives between 2009-2019. Global Environmental Change, 70. https://doi.org/10.1016/j.gloenvcha.2021.102330
  • 37. Rahayu, Lusiana B, & van Noordwijk M. (2005). Aboveground Stock Carbon Assessment For Various Land Use Systems in Nunukan, East Kalimantan, 21-35.
  • 38. Rochmayanto, Y. (2009). The change of carbon stock and its economic value in conversion of peat land forest into plantation forest for pulp. Agriculture Institute Bogor.1-10.
  • 39. Roe, D., & Elliott, J. (2010). The Earthscan reader in poverty and biodiversity conservation. In Earthscan readers series.1-146.
  • 40. Sunderlin, W. D., Dewi, S., Puntodewo, A., Müller, D., Angelsen, A., & Epprecht, M. (2008). Why forests are important for global poverty alleviation: A spatial explanation. Ecology and Society, 13(2), 1-22. https://doi.org/10.5751/ES-02590-130224
  • 41. Tosiani A. (2015). Carbon sequestration and emission. Jakarta (ID): DIRJEN Planologi Kementerian Lingkungan Hidup dan Kehutanan.1-155.
  • 42. Van de Perre, F., Willig, M. R., Presley, S. J., Andemwana, F. B., Beeckman, H., Boeckx, P., Cooleman, S., de Haan, M., de Kesel, A., Dessein, S., Grootaert, P., Huygens, D., Janssens, S. B., Kearsley, E., Kabeya, P. M., Leponce, M., van den Broeck, D., Verbeeck, H., Würsten, B., ... Verheyen, E. (2018). Reconciling biodiversity and carbon stock conservation in an Afrotropical forest landscape. Science Advances, 4(3), 1-9. https://doi.org/10.1126/sciadv.aar6603
  • 43. Wensing D. (2021). Why forest-based carbon trading is poised to go mainstream. Greenbiz.Com. Accessed 1 February 2022. Https://Www.Greenbiz.Com/Article/Why-Forest-Based-Carbon-Trading-Poised-Go-Mainstream.
  • 44. White, A., & Martin, A. (2002). Who owns the world ́s forests? Forest tenure and public forests in transition. In Notes.1-32.
  • 45. Wood, A., Tolera, M., Snell, M., O’Hara, P., & Hailu, A. (2019). Community forest management (CFM) in south-west Ethiopia: Maintaining forests, biodiversity and carbon stocks to support wild coffee conservation. Global Environmental Change, 59. 1-11. https://doi.org/10.1016/j.gloenvcha.2019.101980
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce864d5a-174f-41fc-b32b-3ea13cbbfe64
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.