PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamics of thin disk settling in two layered fuid with density transition

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Settling of solid particles in a stratifed ambient fuid is a process widely encountered in geophysical fows. A set of experiments demonstrating the settling behaviour (the pattern of trajectory, variation of particle orientation, and settling velocity with depth) of thin disks descending through a nonlinear density transition was performed. The results showed complex hydrodynamic interactions between a particle and a liquid causing settling orientation instabilities and unsteady particle descent in low to moderate Reynolds number regime. Five phases of settling were observed: two phases with stable horizontal, one with stable vertical disk position, and two reorientation phases; moreover, two local minima of settling velocity were identifed. It was demonstrated that thresholds for local minima and the frst reorientation depend on the settling dynamics in an upper layer, stratifcation conditions, and disk geometry. The comparison of settling behaviour of thin disks varying in diameter revealed that settling dynamics is sensitive to particle geometry mainly in the upper part of density transition with a non-obvious result that the frst minimum velocity is smaller for a disk with a larger diameter than for a disk with a smaller diameter. The analysis of settling trajectory showed that two reorientations are accompanied with a horizontal drift, which may be important in the context of interactions between particles settling in a group.
Czasopismo
Rocznik
Strony
1145--1160
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
  • Institute of Geophysics, Polish Academy of Sciences, Ks. Janusza 64, 01-452 Warsaw, Poland
Bibliografia
  • 1. Abaid N, Adalsteinsson D, Agyapong A, McLaughlin RM (2004) An internal splash: levitation of falling spheres in stratified fluids. Phys Fluids 16:1567–1580. https://doi.org/10.1063/1.1687685
  • 2. Ardekani AM, Doostmohammadi A, Desai N (2017) Transport of particles, drops, and small organisms in density stratified fluids. Phys Rev Fluids 2:100503. https://doi.org/10.1103/PhysRevFluids.2.100503
  • 3. Arnosti C (2011) Microbial extracellular enzymes and the marine carbon cycle. Annu
  • 4. Auguste F, Magnaudet J, Fabre D (2013) Falling styles of disks. J Fluid Mech 719:388–405. https://doi.org/10.1017/jfm.2012.602
  • 5. Bagheri G, Bonadonna C (2016) On the drag of freely falling non-spherical particles. Powder Technol 301:526–544. https://doi.org/10.1016/j.powtec.2016.06.015
  • 6. Blanchette F, Shapiro AM (2012) Drops settling in sharp stratification with and without Marangoni effects. Phys Fluids 24:042104. https://doi.org/10.1063/1.4704790
  • 7. Camassa R, Falcon C, Lin J, McLaughlin RM, Mykins N (2010) A first-principle predictive theory for a sphere falling through sharply stratified fluid at low Reynolds number. J Fluid Mech 664:436–465. https://doi.org/10.1017/s0022112010003800
  • 8. Camassa R, Falcon C, Lin J, McLaughlin RM, Parker R (2009) Prolonged residence times for particles settling through stratified miscible fluids in the Stokes regime. Phys Fluids 21:031702. https://doi.org/10.1063/1.3094922
  • 9. Capet A, Stanev EV, Beckers JM, Murray JW, Gregoire M (2016) Decline of the Black Sea oxygen inventory. Biogeosciences 13:1287–1297. https://doi.org/10.5194/bg-13-1287-2016
  • 10. Clift R, Grace JR, Weber ME (1978) Bubbles, drops, and particles. Academic Press, Cambridge
  • 11. Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62:2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025
  • 12. D'Asaro E (2018) Oceanographic floats: principles of operation. In: Venkatesan R, Tandon A, D'Asaro E, Atmanand MA (eds) Observing the oceans in real time. Springer, Cham, pp 77–98. https://doi.org/10.1007/978-3-319-66493-4_5
  • 13. Dey S, Ali SZ, Padhi E (2019) Terminal fall velocity: the legacy of Stokes from the perspective of fluvial hydraulics. Proc R Soc A-Math Phys Eng Sci 475:20190277. https://doi.org/10.1098/rspa.2019.0277
  • 14. Diercks A, Ziervogel K, Sibert R, Joye SB, Asper V, Montoya JP (2019) Vertical marine snow distribution in the stratified, hypersaline, and anoxic Orca Basin (Gulf of Mexico). Elementa-Sci Anthrop 7:1. https://doi.org/10.1525/elementa.348
  • 15. Dietrich WE (1982) Settling velocity of natural particles. Water Resour Res 18:1615–1626. https://doi.org/10.1029/WR018i006p01615
  • 16. Doostmohammadi A, Ardekani AM (2014) Reorientation of elongated particles at density interfaces. Phys Rev E 90:033013. https://doi.org/10.1103/PhysRevE.90.033013
  • 17. Doostmohammadi A, Dabiri S, Ardekani AM (2014) A numerical study of the dynamics of a particle settling at moderate Reynolds numbers in a linearly stratified fluid. J Fluid Mech 750:5–32. https://doi.org/10.1017/jfm.2014.243
  • 18. Doostmohammadi A, Stocker R, Ardekani AM (2012) Low-Reynolds-number swimming at pycnoclines. Proc Natl Acad Sci USA 109:3856–3861. https://doi.org/10.1073/pnas.1116210109
  • 19. Field SB, Klaus M, Moore MG, Nori F (1997) Chaotic dynamics of falling disks. Nature 388:252–254. https://doi.org/10.1038/40817
  • 20. Kestin J, Khalifa HE, Correia RJ (1981) Tables of the dynamic and kinematic viscosity of aqueous NaCl solutions in the temperature-range 20–150-degrees-C and the pressure range 0.1–35 MPa. J Phys Chem Ref Data 10:71–87
  • 21. Khatmullina L, Isachenko I (2017) Settling velocity of microplastic particles of regular shapes. Mar Pollut Bull 114:871–880. https://doi.org/10.1016/j.marpolbul.2016.11.024
  • 22. Kindler K, Khalili A, Stocker R (2010) Diffusion-limited retention of porous particles at density interfaces. Proc Natl Acad Sci USA 107:22163–22168. https://doi.org/10.1073/pnas.1012319108
  • 23. Lam T, Vincent L, Kanso E (2019) Passive flight in density-stratified fluids. J Fluid Mech 860:200–223. https://doi.org/10.1017/jfm.2018.862
  • 24. Laurenceau-Cornec EC, Le Moigne FAC, Gallinari M et al (2019) New guidelines for the application of Stokes' models to the sinking velocity of marine aggregates. Limnol Oceanogr 9999:1–22. https://doi.org/10.1002/lno.11388
  • 25. Loth E (2008) Drag of non-spherical solid particles of regular and irregular shape. Powder Technol 182:342–353. https://doi.org/10.1016/j.powtec.2007.06.001
  • 26. Lutz M, Dunbar R, Caldeira K (2002) Regional variability in the vertical flux of particulate organic carbon in the ocean interior. Global Biogeochem Cycles 16(3):1037. https://doi.org/10.1029/2000gb001383
  • 27. Macintyre S, Alldredge AL, Gotschalk CC (1995) Accumulation of marine snow at density discontinuities in the water column. Limnol Oceanogr 40:449–468. https://doi.org/10.4319/lo.1995.40.3.0449
  • 28. Maggi F (2013) The settling velocity of mineral, biomineral, and biological particles and aggregates in water. J Geophys Res-Oceans 118:2118–2132. https://doi.org/10.1002/jgrc.20086
  • 29. Magnaudet J, Mercier MJ (2020) Particles, drops, and bubbles moving across sharp interfaces and stratified layers. Annu Rev Fluid Mech 52:61–91. https://doi.org/10.1146/annurev-fluid-010719-060139
  • 30. Mercier MJ, Wang S, Pemeja J, Ern P, Ardekani AM (2020) Settling disks in a linearly stratified fluid. J Fluid Mech 885:A2. https://doi.org/10.1017/jfm.2019.957
  • 31. Mrokowska MM (2018) Stratification-induced reorientation of disk settling through ambient density transition. Sci Rep 8:412. https://doi.org/10.1038/s41598-017-18654-7
  • 32. Mrokowska MM, Krztoń-Maziopa A (2019) Viscoelastic and shear-thinning effects of aqueous exopolymer solution on disk and sphere settling. Sci Rep 9:7897. https://doi.org/10.1038/s41598-019-44233-z
  • 33. Noufal KK, Najeem S, Latha G, Venkatesan R (2017) Seasonal and long term evolution of oceanographic conditions based on year-around observation in Kongsfjorden, Arctic Ocean. Polar Sci 11:1–10. https://doi.org/10.1016/j.polar.2016.11.001
  • 34. Okino S, Akiyama S, Hanazaki H (2017) Velocity distribution around a sphere descending in a linearly stratified fluid. J Fluid Mech 826:759–780. https://doi.org/10.1017/jfm.2017.474
  • 35. Peperzak L, Colijn F, Koeman R, Gieskes WWC, Joordens JCA (2003) Phytoplankton sinking rates in the Rhine region of freshwater influence. J Plankton Res 25:365–383. https://doi.org/10.1093/plankt/25.4.365
  • 36. Prairie JC, White BL (2017) A model for thin layer formation by delayed particle settling at sharp density gradients. Cont Shelf Res 133:37–46. https://doi.org/10.1016/j.csr.2016.12.007
  • 37. Prairie JC, Ziervogel K, Camassa R et al (2015) Delayed settling of marine snow: effects of density gradient and particle properties and implications for carbon cycling. Mar Chem 175:28–38. https://doi.org/10.1016/j.marchem.2015.04.006
  • 38. Prairie JC, Ziervogel K, Camassa R et al (2017) Ephemeral aggregate layers in the water column leave lasting footprints in the carbon cycle. Limnol Oceanogr Lett 2:202–209. https://doi.org/10.1002/lol2.10053
  • 39. Raffaele L, Bruno L, Sherman DJ (2020) Statistical characterization of sedimentation velocity of natural particles. Aeol Res. https://doi.org/10.1016/j.aeolia.2020.100593
  • 40. Renggli CJ, Wiesmaier S, De Campos CP, Hess KU, Dingwell DB (2016) Magma mixing induced by particle settling. Contrib Miner Petrol 171(11):96. https://doi.org/10.1007/s00410-016-1305-1
  • 41. Saxby J, Beckett F, Cashman K, Rust A, Tennant E (2018) The impact of particle shape on fall velocity: Implications for volcanic ash dispersion modelling. J Volcanol Geoth Res 362:32–48. https://doi.org/10.1016/j.jvolgeores.2018.08.006
  • 42. Scase MM, Dalziel SB (2004) Internal wave fields and drag generated by a translating body in a stratified fluid. J Fluid Mech 498:289–313. https://doi.org/10.1017/s0022112003006815
  • 43. Srdic-Mitrovic AN, Mohamed NA, Fernando HJS (1999) Gravitational settling of particles through density interfaces. J Fluid Mech 381:175–198. https://doi.org/10.1017/s0022112098003590
  • 44. Turner JT (2015) Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump. Prog Oceanogr 130:205–248. https://doi.org/10.1016/j.pocean.2014.08.005
  • 45. Verso L, van Reeuwijk M, Liberzon A (2019) Transient stratification force on particles crossing a density interface. Int J Multiph Flow. https://doi.org/10.1016/j.ijmultiphaseflow.2019.103109
  • 46. Waldschlager K, Schuttrumpf H (2019) Effects of particle properties on the settling and rise velocities of microplastics in freshwater under laboratory conditions. Environ Sci Technol 53:1958–1966. https://doi.org/10.1021/acs.est.8b06794
  • 47. Willmarth WW, Hawk NE, Harvey RL (1964) Steady and unsteady motions and wakes of freely falling disks. Phys Fluids 7:197–208. https://doi.org/10.1063/1.1711133
  • 48. Woods AW (1995) The dynamics of explosive volcanic-eruptions. Rev Geophys 33:495–530. https://doi.org/10.1029/95rg02096
  • 49. Yick KY, Torres CR, Peacock T, Stocker R (2009) Enhanced drag of a sphere settling in a stratified fluid at small Reynolds numbers. J Fluid Mech 632:49–68. https://doi.org/10.1017/s0022112009007332
  • 50. Zhai L, Sun ZB, Li ZM et al (2019) Dynamic effects of topography on dust particles in the Beijing region of China. Atmos Environ 213:413–423. https://doi.org/10.1016/j.atmosenv.2019.06.029
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce85aa73-d8c2-4b47-86d0-4e15cbc036c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.