PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quasi-static cyclic loading experiment and analysis of double-side slotted steel tube shear damper

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The traditional shear type damper is optimized, and a low-cost double-sided slotted steel tube shear damper with steel tube is proposed. The elastic-plastic deformation in the plane of the slotted steel plate on the side of the steel tube is used to absorb the seismic energy to achieve the purpose of vibration reduction. Taking the height, width, joint width and wall thickness of the bending element as the design parameters, four groups of nine double-sided slotted steel tube shear dampers are designed and quasi-static tests are carried out to study the effects of different design parameters on their working performance, energy dissipation capacity and failure characteristics. The test results show that the damper has strong plastic deformation capacity, good seismic performance and energy dissipation capacity. The hysteretic curve is symmetrical and full, which is similar with shuttle shape. The yield displacement is small, but the deformation capacity is strong. Properly increasing the width of bending element and the wall thickness of steel tube is helpful to energy dissipation. The finite element model of the damper is established, and the simulation results are in good agreement with the test results, which verifies the correctness of the finite element model and can provide some reference for related engineering applications.
Rocznik
Strony
art. no. e45, 2023
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
  • School of Architecture and Civil Engineering, Zhongyuan University of Technology, No. 41, Zhongyuan Middle Road, Zhengzhou 450007, China
autor
  • Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China
  • Key Laboratory of Earthquake Disaster Mitigation, Ministry of Emergency Management, Harbin 150080, China
autor
  • School of Architecture and Civil Engineering, Zhongyuan University of Technology, No. 41, Zhongyuan Middle Road, Zhengzhou 450007, China
  • School of Architecture and Civil Engineering, Zhongyuan University of Technology, No. 41, Zhongyuan Middle Road, Zhengzhou 450007, China
autor
  • School of Architecture and Civil Engineering, Zhongyuan University of Technology, No. 41, Zhongyuan Middle Road, Zhengzhou 450007, China
Bibliografia
  • 1. Rittweger A, Albus J, Hornung E, et al. Passive damping devices for aerospace structures. Acta Astronaut. 2002;50(10):597-608. https://doi.org/10.1016/s0094-5765(01)00220-x.
  • 2. Pan Q, He T, Xiao D, et al. Design and damping analysis of a new eddy current damper for aerospace applications. Latin Am J Solids Struct. 2016;13(11):1997-2011. https://doi.org/10.1590/1679-78252272.
  • 3. Deng H, Gao Y, Hu R, et al. Self-sensing automotive magnetorheological dampers for low frequency vibration. Smart Mater Struct. 2021. https://doi.org/10.1088/1361-665X/ac2c5f.
  • 4. Hussan M, Rahman MS, Sharmin F, et al. Multiple tuned mass damper for multi-mode vibration reduction of of shore wind turbine under seismic excitation. Ocean Eng. 2018;160:449-60. https://doi.org/10.1016/j.oceaneng.2018.04.041.
  • 5. Tell S, Leander J, Andersson A, et al. Probability-based evaluation of the effect of fluid viscous dampers on a high-speed railway bridge. Struct Infrastruct Eng. 2020;17(12):1730-42. https://doi. Org/10.1080/15732479.2020.1832537.
  • 6. Shen X, Wang X, Ye Q, et al. Seismic performance of transverse steel damper seismic system for long span bridges. Eng Struct. 2017;141:14-28. https://doi.org/10.1016/j.engstruct.2017.03.014.
  • 7. KhedmatgozarDolati SS, Mehrabi A, KhedmatgozarDolati SS. Application of viscous damper and laminated rubber bearing pads for bridges in seismic regions. Metals. 2021. https://doi.org/10.3390/met11111666.
  • 8. Aydin E, Öztürk B, Dutkiewicz M. Analysis of effciency of passive dampers in multistorey buildings. J Sound Vib. 2019;439:17-28. https://doi.org/10.1016/j.jsv.2018.09.031.
  • 9. Kandemir-Mazanoglu EC, Mazanoglu K. An optimization study for viscous dampers between adjacent buildings. Mech Syst Signal Process. 2017;89:88-96. https://doi.org/10.1016/j.ymssp.2016.06.001.
  • 10. Chen L, Sun L, Xu Y, et al. A comparative study of multi-mode cable vibration control using viscous and viscoelastic dampers through field tests on the Sutong Bridge. Eng Struct. 2020. https:// doi.org/10.1016/j.engstruct.2020.111226.
  • 11. Zhao Y, Zhang L. Damage quantifcation of frame-shear wall structure with metal rubber dampers under seismic load. Revue des composites et des matériaux avancés. 2020;30(5-6):227-34. https://doi.org/10.18280/rcma.305-605.
  • 12. Wang B, Yan W, He H. Mechanical performance and design method of improved lead shear damper with long stroke. Shock Vib. 2018;2018:1-18. https://doi.org/10.1155/2018/1623103.
  • 13. Mingxing D, Chen R, Xing G, et al. SEISMIC analysis of high-rise buildings with composite metal damper. MATEC Web Conf. 2015. https://doi.org/10.1051/matecconf/20153111002.
  • 14. Park H-Y, Oh S-H. Structural performance of beam system with T-stub type slotted damper. Eng Struct. 2020. https://doi.org/10.1016/j.engstruct.2019.109858.
  • 15. Park H-Y, Kim J, Kuwahara S. Cyclic behavior of shear-type hysteretic dampers with different cross-sectional shapes. J Constr Steel Res. 2021. https://doi.org/10.1016/j.jcsr.2021.106964.
  • 16. Oh S-H, Park H-Y. Experimental study on seismic performance of steel slotted damper under additional tensile load. J Build Eng. 2022. https://doi.org/10.1016/j.jobe.2022.104110.
  • 17. Li Z, Shu G, Huang Z. Development and cyclic testing of an innovative shear-bending combined metallic damper. J Constr Steel Res. 2019;158:28-40. https://doi.org/10.1016/j.jcsr.2019.03.008.
  • 18. Bayat K, Shekastehband B. Seismic performance of beam to column connections with T-shaped slotted dampers. Thin-Walled Struct. 2019. https://doi.org/10.1016/j.tws.2019.04.010.
  • 19. Sahoo DR, Singhal T, Taraithia SS, et al. Cyclic behavior of shear-and-fexural yielding metallic dampers. J Constr Steel Res. 2015;114:247-57. https://doi.org/10.1016/j.jcsr.2015.08.006.
  • 20. Sun Y-Z, Li G-Q, Sun F-F, et al. Experimental study on behavior of steel tube dampers. J Earthquake Eng. 2019;25(10):2106-26. https://doi.org/10.1080/13632469.2019.1619635.
  • 21. Wang W, Luo Q, Xu S, et al. Application research of corrugated mild metal shear damper based on damage control and energydissipation improvement. J Build Eng. 2022. https://doi.org/10.1016/j.jobe.2021.103840.
  • 22. Jiao Y, Kishiki S, Yamada S, et al. Low cyclic fatigue and hysteretic behavior of U-shaped steel dampers for seismically isolated buildings under dynamic cyclic loadings. Earthquake Eng Struct Dynam. 2015;44(10):1523-38. https://doi.org/10.1002/eqe.2533.
  • 23. Suk R, Altintaș G. Behavior of multidirectional friction dampers. J Vib Control. 2020;26(21-22):1969-79. https://doi.org/10.1177/1077546320909978.
  • 24. Collette C, Chesné S. Robust hybrid mass damper. J Sound Vib. 2016;375:19-27. https://doi.org/10.1016/j.jsv.2016.04.030.
  • 25. KeykhosroKiani B, Hosseini HB. Development of a double-stage yielding damper with vertical shear links. Eng Struct. 2021. https://doi.org/10.1016/j.engstruct.2021.112959.
  • 26. ZareGolmoghany M, Zahrai SM. Improving seismic behavior using a hybrid control system of friction damper and vertical shear panel in series. Structures. 2021;31:369-79. https://doi.org/10.1016/j.istruc.2021.02.007.
  • 27. Bakhshayesh Y, Shayanfar M, Ghamari A. Improving the performance of concentrically braced frame utilizing an innovative shear damper. J Constr Steel Res. 2021;182: 106672. https://doi.org/10.1016/j.jcsr.2021.106672.
  • 28. Ghamari A, Kim Y-J, Bae J. An Innovative shear link as damper: an experimental and numerical study. Steel Compos Struct. 2022;42(4):539-52. https://doi.org/10.12989/SCS.2022.42.4.539.
  • 29. Ghamari A, Kim C, Jeong S-H. Development of an innovative metallic damper for concentrically braced frame systems based on experimental and analytical studies. Struct Des Tall Spec Build. 2022;31(8):e1927. https://doi.org/10.1002/tal.1927.
  • 30. Ghamari A, Almasi B, Kim C-H, et al. An innovative steel damper with a fexural and shear- fexural mechanism to enhance the CBF system behavior: an experimental and numerical study. Appl Sci. 2021;11(23):11454. https://doi.org/10.3390/app11 2311454.
  • 31. Ghamari A, Kim Y-J, Bae J. Utilizing an I-shaped shear link as a damper to improve the behaviour of a concentrically braced frame. J Constr Steel Res. 2021;186:106915. https://doi.org/10.1016/j.jcsr.2021.106915.
  • 32. Zhao J, Chen R, Zhou Y, et al. Effect of gusset connection configurations on frame-gusset interaction in steel buckling-restrained braced frame. Struct Des Tall Spec Build. 2019. https://doi.org/10.1002/tal.1584.
  • 33. Huang X, Zhu H-P. Optimal arrangement of viscoelastic dampers for seismic control of adjacent shear-type structures. J Zhejiang Univ Sci A. 2013;14(1):47-60. https://doi.org/10.1631/jzus. A1200181.
  • 34. Khazaei M, Vahdani R, Kheyroddin A. Optimal location of multiple tuned mass dampers in regular and irregular tall steel buildings plan. Shock Vib. 2020;2020:1-20. https://doi.org/10.1155/2020/9072637.
  • 35. JG/T 209-2012, Dampers for vibration energy dissipation of buildings [S]. Ministry of Housing and Urban-Rural Development of the People's Republic of China, Beijing, China.
  • 36. GB/T 50463-2019, Standard for design of engineering vibration isolation [S]. China Machinery lndustry Federation, Beijing, China.
  • 37. GB/T 228.1-2010, Metallic materials-Tensile testing-Part 1:Method of test at room temperature [S]. China Iron and Steel Association, Beijing, China.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce828897-f878-4693-bb04-0af426a9765a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.