PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic system with random structure for modeling security and risk management in cyberspace

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We deal with the investigation of L2-stability of the trivial solution to the system of difference equations with coefficients depending on a semi-Markov chain. In our considerations, random transformations of solutions are assumed. Necessary and sufficient conditions for L2-stability of the trivial solution to such systems are obtained. A method is proposed for constructing Lyapunov functions and the conditions for its existence are justified. The dynamic system and methods discussed in the paper are very well suited for use as models for protecting information in cyberspace.
Rocznik
Strony
23--37
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
  • Kyiv National Economic University named after Vadym Hetman Department of Computer Mathematics and Information Security Kiev 03068, Peremogy 54/1, Ukraine
  • University of Białystok Faculty of Mathematics and Informatics K. Ciołkowskiego IM, 15-245 Białystok, Poland
Bibliografia
  • [1] V.M. Artemjev, I.E. Kazakov, Handbook on the Theory of Automatic Control, Nauka, Moscow, 1987 [in Russian].
  • [2] E. Cinlar, Markov renewal theory, Adv. in Appl. Probab. 2 (1969), 123-187.
  • [3] J. Diblik, I. Dzhalladova, M. Michalkova, M. Ruzickova, Modeling of applied problems by stochastic systems and their analysis using the moment equations, Adv. Difference Equ. 2013 (2013), 12 pp.
  • [4] J. Diblik, I. Dzhalladova, M. Michalkova, M. Ruzickova, Moment equations in modeling a stable foreign currency exchange market in conditions of uncertainty, Abstr. Appl. Anal. 2013 (2013), Art. ID 172847, 11 pp.
  • [5] LA. Dzhalladova, Optimization of Stochastic System, KNEU, Kiev, 2005 [in Russian].
  • [6] I. Dzhalladova, M. Ruzickova, V. Stoudkova Ruzickova, Stability of the zero solution of nonlinear differential equations under the influence of white noise, Adv. Difference Equ. 2015 (2015), 11 pp.
  • [7] I.Ya. Katz, Lyapunov function method in problems of stability and stabilizability problems of random structure systems, UGAPS, Ykaterinburg, 1998 [in Russian].
  • [8] V.S. Korolyuk, W. Limnios, Stochastic Systems in Merging Phase Space, London, World Scientific, 2006.
  • [9] V.S. Korolyuk, V.V. Korolyuk, Stochastic Models of Systems, Naukova Dumka, Kiev, 1989 [in Russian].
  • [10] V.S. Korolyuk, A.F. Turbin, Semi-Markov processes end their applications, Naukova Dumka, Kiev, 1976 [in Russian].
  • [11] P. Levy, Systemes Semi-Markoviens a au plus une infinite denombrable d'etats possibles, Proc. Int. Cong. Math., Amsterdam 2 (1954).
  • [12] N. Limnios, G. Oprisan, Semi-Markov Processes and Reliability, Boston, Birkhauser, 2001.
  • [13] A.M. Lyapunov, General Problem, of the Stability of Motion, Postechizdat, 1950 [in Russian]; Engl. transl. in: Tayor & Francis in London, Washington, DC, 1992.
  • [14] M. Ruzickova, I. Dzhalladova, The optimization of solutions of the dynamic systems with random structure, Abstr. Appl. Anal. 2011 (2011), Art. ID 486714, 18 pp.
  • [15] M. Ruzickova, I. Dzhalladova, J. Laitochova, J. Diblik, Solution to a stochastic pursuit model using moment equations, Discrete Contin. Dyn. Syst. Ser. B 23 (2018), 473-485.
  • [16] W.L. Smith, Regenerative stochastic processes, Proc. Roy. Soc. Edinburgh Sect. A 232, (1955), 6-31.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce826b2d-94fc-4b26-a173-0517ab0f59b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.