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Abstract.We deal with the investigation of L2-stability of the trivial solution to the system of
difference equations with coefficients depending on a semi-Markov chain. In our considerations,
random transformations of solutions are assumed. Necessary and sufficient conditions for
L2-stability of the trivial solution to such systems are obtained. A method is proposed for con-
structing Lyapunov functions and the conditions for its existence are justified. The dynamic
system and methods discussed in the paper are very well suited for use as models for protecting
information in cyberspace.
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1. INTRODUCTION

The semi-Markov processes theory is very well applicable to many real processes, it is
widely applied in biology and medicine for prognosis and the evolution of diseases, in
sociology or socioeconomics for a model of the marriage market, in finance for a model
of the credit rating and reliability. Semi-Markov processes are also used in the field of
computer science and technology. Since cyberspace has become the arena of numerous
conflicts, differing in form and method, intensity and degree of threats, the modelling
of cybersecurity problems is especially important.

The semi-Markov process was first clearly formulated independently by Lèvy [11]
in 1954 and Smith [16] in 1955. The theory was extended and applied to a problem of the
reliability theory by many authors, the main development of the theory was proposed,
for example, by Çinlar, Korolyuk, Limnios, Turbin, Oprisan [2,8–10,12]. The dynamic
systems considered in this paper are called systems with random states. They were
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studied, for example, by Artemiev [1], Katz [7], and others. Some applications of such
systems were studied in [3,4,6,14,15]. Specifically, in [15] the problem of navigation to
a target described by differential equation with random parameters is considered. The
mathematical model of foreign currency exchange market in the form of a stochastic
linear differential equation with coefficients depending on a semi-Markov process is
considered in [4]. The dynamic system and methods discussed in this paper are very
well suited for use as models for protecting information in cyberspace.

Let (Ω,F , F, P ) be a filtered probability space consisting of a probability space
(Ω,F , P ) and a filtration F = {Ft, ∀t ≥ 0} ⊂ F . The space Ω is called the sample
space, F is the set of all possible events (the σ-algebra), and P is some probability
measure on Ω. A sequence ξ = {ξi}∞i=1 of random variables ξi : Ω→ S, i = 0, 1, 2, . . .
is called a discrete-time stochastic chain on the state space S. In our considerations,
ξ is a random semi-Markov chain and the state space S is the space of all random vari-
ables for which there exists squared mathematical expectation. On such a probability
space, we consider system of linear difference equations with semi-Markov switching

Xk+1 = A(k, ξ)Xk, k = 0, 1, 2, . . . (1.1)

X0 = ϕ, (1.2)

where A is an m ×m matrix whose elements depend on the semi-Markov chain ξ.
The state function Xk is an m-dimensional column vector-function with the initial
state X0 = ϕ.

An m-dimensional column vector-function Xk is called a solution to initial value
problem (1.1), (1.2) if Xk satisfies (1.1) and initial condition (1.2) whitin the meaning
of a strong solution of the initial Cauchy problem.

Our goal in this article is to obtain necessary and sufficient conditions of L2-stability
for systems (1.1) with semi-Markov coefficients and random transformations of
solutions.

The basis for most authors in the development of the stability of stochas-
tic systems was the theory of stability of a deterministic system developed by
Lyapunov [13]. To study stability in the mean and stability in the mean square,
the traditional method of Lyapunov functions was developed by many authors.
The method of Lyapunov functions is an effective method for investigation sta-
bility of linear or nonlinear difference systems that are explicitly independent of
the time. However, the method of Lyapunov functions is often difficult to apply
to the study of the stability of non-stationary dynamic systems. This can be ex-
plained by the fact that it is inconvenient to use the Lyapunov functions in the sense
of the Lyapunov stability concept for this type of systems. The investigation of the
Lyapunov stability of differential systems with random parameters becomes even more
complicated. For this reason, a modified definition of stability of the trivial solution
of non-stationary difference systems is given. This definition of L2-stability is based
on the concept of moments, and it is very well compatible with the Lyapunov functions
method.
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2. PRELIMINARY REMARKS

In our considerations, the random semi-Markov chain ξ can take n possible states
θ1, θ2, . . . , θn. In accordance with the theory, for the discrete random variable we can
define particular probability density functions by formula transition intensities qls(k),
l, s = 1, . . . , n, from state θs to θl at time k satisfy the following conditions:

qls(k) > 0,
∞∑

k=1
qls(k) = πls, l, s = 1, . . . , n, (2.1)

qs(k) =
n∑

l=1
qls(k), s = 1, . . . , n,

∞∑

k=1
qs(k) = 1.

Denote
A(k, ξ) = As(k), if ξ = θs, k = 0, 1, . . . , s = 1, . . . , n,

and X0 = X0,s, ϕ = ϕs if ξ = θs, s = 1, . . . , n. Then the initial Cauchy prob-
lem (1.1), (1.2) determines the initial Cauchy problem for non-stationary systems of
linear equations,

Xk+1,s = As(k)Xk,s, k = 0, 1, . . . , s = 1, . . . , n, (2.2)

X0,s = ϕs, (2.3)

in each of realizations of the semi-Markov chain ξ.
Let m×m matrices Ns(k), s = 1, . . . , n, be fundamental matrices of solutions to

initial Cauchy problem (2.2), (2.3) such that Ns(0) = I, s = 1, . . . , n, where I is the
m×m identity matrix. Then the solutions to (2.2), (2.3) can be written in the form

Xk,s = Ns(k)X0,s, k = 0, 1, . . . , s = 1, . . . , n.

Moreover, for any m ×m regular constant matrix Cls, l, s = 1, . . . , n, the jumps of
solutions have the following form:

Xk = Ns(k − kj−1)Xkj−1 , kj−1 ≤ k ≤ kj , j = 1, 2, . . . ,
Xkj = ClsNs(k − kj−1)Xkj−1 , detCls 6= 0, l, s = 1, . . . , n,
Xk = Nl(k − kj)Xkj , kj ≤ k ≤ kj+1.

(2.4)

Hence it is obvious that the solutions to system (1.1), as well as to systems (2.2) are
random variables. It is known, the density function f(k, x, ξ) of the random variable
Xk depending on the semi-Markov chain ξ with n possible states, can be written as

f(k, x, ξ) =
n∑

s=1
fs(k, x)δ(ξ − θs)
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where δ is the Dirac delta function, and fs(k, x), s = 1, 2, . . . , n, are the particular
density functions of the random variables Xk,s, corresponding to each of realizations
of the semi-Markov chain ξ. They satisfy the following conditions

fs(k, x) ≥ 0,
∫

Rm

fs(k, x)dx = 1, k = 1, 2, . . . , s = 1, 2, . . . , n,

f(k, x) =
n∑

s=1
fs(k, x).

In our considerations it is advisable to use the column-vector function of particular
density functions. Let us denote

F (k, x) =
(
f1(k, x), f2(k, x), . . . , fn(k, x)

)T
. (2.5)

We use matrix operators to prove our results.
Definition 2.1. Let on the probability space (Ω, F , F, P ) be defined two random
variables X ≡ X(ω) : Ω → Rm and Y ≡ Y (ω) : Ω → Rm with probability density
functions f1(x) and f2(y), respectively. Then the operator

L : f1(x)→ f2(y) or f2(y) = Lf1(x)

is said to be the stochastic operator.
A general form of the stochastic operator is given, for example, in [5]. In the case

of a linear transformation y = Ax, detA 6= 0, the operator L has the form

Lf(x) = f
(
A−1x

) ∣∣detA−1∣∣ . (2.6)

This implies
f(k, x) = L(k − k0)f(k0, x), (2.7)

where
L(k)f(k, x) = f

(
k0, N

−1(k)x
) ∣∣detN−1(k)

∣∣ , (2.8)
if N(k) is a solution to a initial Cauchy problem of type (1.1), (1.2).

For s = 1, . . . , n, we define operators

ψ(k) := diag
(
ψ1(k), . . . , ψn(k)

)
, ψs(k) ≡

∞∑

i=k+1
qs(i),

S(k) :=
(
qisSis

)n

i,s=1, Sisf(x) ≡ f(C−1
is x) detC−1

is , i = 1, . . . , n,

R(k) := diag
(
R1(k), . . . , Rn(k)

)
, Rsf(x) ≡ f(N−1

s (k)x) detN−1
s (k).

(2.9)

Our task is to obtain reliable and simple method for investigating L2-stability of
solutions to this class of systems, see in [5].
Definition 2.2. The trivial solution to system (1.1) is said to be L2-stable if for any
solution Xk, k = 0, 1, . . ., to system (1.1) the series

∑∞
k=0 E

(1){‖Xk‖2} konverges.
Remark 2.3. It is easy to see that the trivial solution to system (1.1) is L2-stable if
and only if the matrix series

∑∞
k=0 E

(2){Xk

}
, or

∑∞
k=0 E

(1){Xk X
T
k } are convergent.
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3. MOMENT EQUATIONS FOR DIFFERENCE SYSTEMS
WITH RANDOM JUMPS

To obtain the stability conditions, we prove several auxiliary statements.
Lemma 3.1. Let Xk, k = 0, 1, 2, . . . , be solutions to system (1.1) with jumps (2.4).
If kj, j = 0, 1, 2, . . ., are moments of jumps of semi-Markov chain ξ, then there exists
the stochastic operator L(k),

L(k) = ψ(k)R(k) +
k∑

kj=k1

L(k − kj)S(kj)R(kj), (3.1)

such that
F (k + kj , x) = L(k)F (kj , x), k, j = 0, 1, 2, . . . , k ≥ kj . (3.2)

The operator L(k) can be found as a solution to the following system

L(k) = ψ(k)R(k) +
k∑

kj=k1

ψ(k − kj)R(k − kj)U(kj), k = 0, 1, 2, . . . , (3.3)

U(k) = S(k)R(k) +
k−1∑

r=1
S(r)R(r)U(k − r), k = 0, 1, 2, . . . (3.4)

Proof. Because at the jumps kj , j = 0, 1, 2, . . . the entire history of the random
process is “forgotten”, i.e. does not affect the behaviour of the solutions to system (1.1)
under the condition k > kj , then there exists a stochastic matrix operator L(k) :=(
Lij(k)

)n

i,j=1, k = 0, 1, 2, . . ., such that (3.2) is satisfied. Given that all jump times
kj , j = 0, 1, 2, . . ., are equally probable, we can take k0 = 0 as the initial moment. So,
system (3.2) goes into the form

fr(k, x) =
n∑

s=1
Lrs(k)fs(0, x), r = 1, . . . , n, k > 0. (3.5)

Let the random process ξ take on state θs at k = 0. The random process remains in
the state θs for a time k > 0 with probability ψs and with probability qrs(k) goes into
state θr at t = kj . Then, with respect to (2.6), (2.7), and (2.8), for particular density
functions we have

fs(k, x) =ψs(k)fs(0, N−1
s (k)x) detN−1

s (k)

+
k∑

kj=k1

qrs(k)Lsr(k − kj)fs(0, N−1
s (k)C−1

rs x) detN−1
s (k)|detC−1

rs |,

fr(k, x) =
k∑

kj=k1

qrsLsr(k − kj)fr(0, N−1
r (k)C−1

sk X) detN−1
r (k)|detC−1

sk |,

s, r = 0, 1, 2, . . . , n, r 6= s.
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System for particular density functions can be rewritten into a simpler form, using
the Kronecker delta function,

fr(k, x) = δrsψs(k)fs(0, N−1
s (k)x) detN−1

s (k)

+
k∑

kj=k1

qrs(k)Lsr(k − kj)fs(0, N−1
s (k)C−1

rs x) detN−1
s (k)|detC−1

rs |,

r = 1, 2, . . . , n,

then, using (2.9), we have

L(k)F (0, x) = ψ(k)R(k)F (0, x) +
k∑

kj=k1

L(k − kj)S(kj)R(kj)F (0, x),

which proves equation (3.1) for the stochastic operator L(k).
Solution to (3.1) can be found by the method of successive approximations. Let us

find the solution to (3.1) in the form (3.3) where U is an unknown matrix operator.
If we put L(k) expressed in the form (3.3) into equation (3.1) we obtain

k∑

kj=k1

ψ(k − kj)R(k − kj)U(kj)

=
k∑

kj=k1

ψ(k − kj)R(k − kj)S(kj)R(kj)

+
k∑

kj=k1

k−kj∑

r=1
ψ(k − kj − r)R(k − kj − r)U(r)S(kj)R(kj),

whence after changing the order of summation we get the equation for operator U(k),

U(k) = S(k)R(k) +
k−1∑

r=1
U(r)S(k − r)R(k − r), k = 0, 1, . . . (3.6)

In a similar way, we find solutions to operator equation (3.6) in the form

U(k) = S(k)R(k) +
k−1∑

r=1
S(r)R(r)V (k − r), k = 0, 1, . . . (3.7)

In this case we obtain a difference equation for operator V (k)

V (k) = S(k)R(k) +
k−1∑

r=1
V (r)S(k − r)R(k − r), k = 0, 1, . . . (3.8)

Comparing the systems of equations (3.6) and (3.8), we can put

U(k) ≡ V (k), k = 0, 1, . . . ,

which proves equation (3.4).
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Lemma 3.2. Let the conditions of Lemma 3.1 be satisfied. Then the vector of moments
of the first order E(1){Xk

}
is determined by a system of equations for particular

moments of the first order E(1)
s

{
Xk

}
, s = 1, 2, . . . , n,

E(1)
s

{
Xk

}
= ψ(k)Ns(k)E(1)

s

{
X0
}

+
k∑

kj=k1

ψs(k − kj)Ns(k − kj)Vs(kj),

Vs(k) =
n∑

i=1
qsi(k)CsiNi(k)E(1)

i

{
X0
}

+
k−k1∑

kj=k1

n∑

i=1
qsi(k − kj)CsiNi(k − kj)Vi(kj).

(3.9)

The matrix of moments of the second order E(2){Xk

}
is determined by a system for

particular second-order moments E(2)
s

{
Xk

}
, s = 1, 2, . . . , n,

E(2)
s

{
Xk

}
= ψs(k)Ns(k)E(2)

s

{
X0
}
NT

s (k)

+
k∑

kj=k1

ψs(k − kj)Ns(k − kj)Ws(kj)NT
s (k − kj),

Ws(k) =
n∑

i=1
qsi(k)CsiNi(k)E(2)

i

{
X0
}
NT

i (k)CT
si

+
k−k1∑

kj=k1

n∑

i=1
qsi(k − kj)CsiNi(k − kj)Wi(kj)NT

i (k − kj)CT
si,

s = 1, 2, . . . , n, k = 1, 2, . . .

(3.10)

Proof. We multiply the operator equations (3.3) and (3.4) from the right to
the vector F (0, x). Denoting

F (k, x) = L(k)F (0, x), H(k, x) = U(k)F (0, x), k = 1, 2, . . .

we obtain the system of equations

F (k, x) = ψ(k)R(k)F (0, x) +
k∑

kj=k1

ψ(k − kj)R(k − kj)H(kj , x), (3.11)

H(k, x) = ψ(k)R(k)F (0, x) +
k−k1∑

kj=k1

S(kj)R(kj)H(k − kj , x). (3.12)
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Using notation (2.5) and H(k, x) =
(
h1(k, x), . . . , hn(k, x)

)T systems of equations
(3.11) and (3.12) can be written in the scalar form

fs(k, x) = ψs(k)Rs(k)fs(0, x) +
k∑

kj=k1

ψs(k − kj)Rs(k − kj)hs(kj , x), (3.13)

hs(k, x) =
n∑

i=1
qsi(k)SsiRi(k)f1(0, x)

+
k−k1∑

kj=k1

n∑

i=1
qsiRi(k − kj)hi(kj , x), s = 1, 2, . . . n.

(3.14)

We multiply the system of equations (3.13) and (3.14) by the vector x ∈ Rm and
integrate troughout the space Rm. By this we immediately get system (3.9) for moments
of the first order. In the same way, if we multiply the system (3.13) and (3.14) by the
matrix xxT , we get system (3.10) for moments of the second order.

4. NECESSARY AND SUFFICIENT CONDITIONS FOR L2-STABILITY
OF SOLUTIONS TO SYSTEM (1.1)

In order to study the mean stability of solutions one can use system of moment
equations (3.9). To the mean square stability of solutions, the system of equations (3.10)
can be used. We use the moment equations to prove L2-stability of the trivial solution
to system (1.1). It should be noted that if the trivial solution to system (1.1) is
L2-stable, then it is asymptotically stable in the mean square.
Theorem 4.1. Let the sums

Is =
∞∑

k=0
ψs(k)Ns(k)NT

s (k), s = 1, . . . , n

converge and Is > 0, s = 1, . . . , n. Then the trivial solution to system (1.1) is L2-stable
if and only if the symmetric matrices

Ws ≡
∞∑

k=0
Ws(k), s = 1, . . . , n (4.1)

are bounded.
Proof. 1. Let the trivial solution to system (1.1) is L2-stable. Then, in view of
Remark 2.3, matrices E(2)

s =
∑∞

k=0 E
(2)
s

{
Xk

}
, s = 1, . . . , n, are bounded. This is,

there exist constants ρs, s = 1, . . . , n, such that E(2)
s ≤ ρsIs. So, taken into account

E
(2)
s ≥ 0, Ws ≥ 0, (3.10), and

E(2)
s ≥

∞∑

k=0
ψs(k)Ns(k)WsN

T
s (k), s = 1, . . . , n,
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we get
∞∑

k=0
ψs(k)Ns(k)(ρsIs −Ws)NT

s (k) ≥ 0, s = 1, . . . , n,

from where
Ws ≤ ρsIs, s = 1, . . . , n, (4.2)

which means that Ws, s = 1, . . . , n are bounded.
2. Let the matrices Ws be bounded, that is, inequalities of the form (4.2) are

fulfilled. Since

E(2)
s =

∞∑

k=0
ψs(k)Ns(k)

(
E(2)

s

{
X0
}

+Ws

)
NT

s (k), s = 1, . . . , n,

then, taken into acount (4.2), we have

E(2)
s 6

∞∑

k=0
ψs(k)Ns(k)

(
E(2)

s

{
X0
}

+ ρsIs

)
NT

s (k), s = 1, . . . , n. (4.3)

Therefore, in view of the convergence Is and Remark 2.3, formula (4.3) means that
the trivial solution to (1.1) is L2-stable.

Theorem 4.2. Let the conditions of Theorem 4.1 be satisfied. Then in order for the
trivial solution to system (1.1) with jumps of solutions (2.4) to be L2-stable, it is
necessary and sufficient that one of the following equivalent conditions holds:

1) there exists a solution Bs = E
(2)
s

{
X0
}

+ Ws > 0 to system of matrix equations
(3.10) under condition E(2)

s

{
X0
}
> 0,

2) successive approximations

B(j+1)
s = E(2)

s

{
X0
}

+
n∑

l=1

∞∑

k=1
qsl(k)CslNl(k)B(j)

l NT
j (k)CT

sl, (4.4)

B(0)
s = 0, s = 1, . . . , n, j = 0, 1, 2, . . . ,

are convergent.
Proof. We introduce monotone operators Lks, k, s = 1, . . . , n, and write the sys-
tem (4.1) in the operator form

LslBl =
∞∑

k=1
qsl(k)CslNl(k)BlN

T
l (k)CT

sl, l, s = 1, . . . , n. (4.5)

From Theorem 4.1 it follows that the system of equations (3.7) has a bounded positive
definite solution Bs > 0, s = 1, . . . , n, under condition E(2)

s

{
X0
}
> 0, s = 1, . . . , n, if

and only if when the successive approximations (4.4) converge. If the conditions of
Theorem 4.1 are satisfied, then from the boundedness of the matrices Bs, s = 1, . . . , n,
and from formulas (4.5) the boundedness of the matrices E(2)

s , s = 1, . . . , n, follows and,
consequently, L2-stability of solutions to system of difference equations (1.1).
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5. CONSTRUCTION OF LYAPUNOV FUNCTIONS

An effective method for studying solutions of a system of difference equations (1.1) with
random semi-Markov coefficients is the method of Lyapunov functions. We describe
the basic idea of constructing the Lyapunov function and give the main result.

We introduce a positive definite quadratic form

w(k,Xk, ξ) = XT
k B(k, ξ)Xk, B(k, ξ) > 0, k = 0, 1, 2, . . . (5.1)

where the elements of the matrix B(k, ξ) are semi-Markov functions.
To define the matrix B(k, ξ), we introduce n different symmetric matrices Bs(k)

for k = 0, 1, 2, . . . , s = 1, . . . , n. Let kj , j = 0, 1, 2, . . ., be moments of jumps of
the semi-Markov chain ξ. Assume that the process ξ is in state θs, this is ξ = θs,
for kj ≤ k < kj−1. Then we set

B(k, ξ = θs) = Bs(k − kj),

ws(k,Xk) = XT
k Bs(k)Xk, s = 1, . . . , n, k, j = 0, 1, 2, . . .

where Bs(k), s = 1, . . . , n, are different symmetric matrices. We define a quadratic
functional v using the mean values of functions (5.1)

v =
∞∑

k=0
E(1){XT

k B(k, ξ)Xk

}
=
∞∑

k=0
E(1){w(k,Xk, ξ)

}
. (5.2)

To calculate the functional v defined in (5.2), we introduce the so-called basic Lyapunov
functions using the mean values of functions ws(k,Xk), that is,

vs =
∞∑

k=0
E(1){ws(k,Xk, ξ)

}
, s = 1, . . . , n, (5.3)

where X0 = ϕ, and ξ = θs for k = 0. The basic Lyapunov functions (5.3) can be found
in the form

vs(X) = XTCsX, s = 1, . . . , n,

where

Cs =
∞∑

k=0
Us(k),



Dynamic system with random structure for modeling security. . . 33

and

Us(k) = ψs(k)NT
s (k)Bs(k)Ns(k)

+
n∑

l=1

k∑

kj=k1

qls(kj)NT
s (kj)ClsUl(k − kj)CT

lsNs(kj), s = 1, . . . , n.
(5.4)

We sum systems (5.4) with respect to the index k in order to obtain a system of matrix
equations for the matrices Cs, s = 1, . . . , n,

Cs =
∞∑

k=0
ψs(k)NT

s (k)Bs(k)Ns(k)

+
n∑

l=1

∞∑

k=1
qls(k)NT

s (k)CT
lsClClsNs(k), s = 1, . . . , n.

(5.5)

We introduce the notation

Hs =
∞∑

k=0
ψs(k)NT

s (k)Bs(k)Ns(k), s = 1, . . . , n.

Then system (5.5) can be rewritten into the form

Cs = Hs +
n∑

l=1

∞∑

k=1
qls(k)NT

s (k)CT
lsClClsNs(s), s = 1, . . . , n. (5.6)

System (5.6) is conjugate to system of equations (3.10), and it can be written in
operator form

Cs = Hs +
n∑

l=1
LT

slCl, s = 1, . . . , n, (5.7)

where operators Lsl for s, l = 1, . . . , n are defined in (3.5).
The existence of a positive solution Cs > 0, s = 1, . . . , n to system (5.5) is equivalent

to the existence of a positive definite solution Bs > 0 to system (5.7), given that
E

(2)
s

{
X0
}
> 0, s = 1, . . . , n. Therefore, this is equivalent to L2-stability of the trivial

solution to system (1.1).
Suppose that the condition

λ1 I ≤ Bs(k) ≤ λ2 I, k = 0, 1, 2, . . . , s = 1, . . . , n,

with λ1 > 0, is fulfilled for matrices Bs(k). Then the existence of functions vs(X)
implies the convergence of the series in Remark 2.3 that is, L2-stability of the trivial
solution to system (1.1).
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We formulate obtained results in the following two theorems.

Theorem 5.1. Suppose that the conditions of Lemmas 3.1 and 3.2 are satisfied. Then
in order for the trivial solution to system (1.1) to be L2-stable, it is necessary and
sufficient that one of the following equivalent conditions holds:

1) there exists solution Cs > 0, s = 1, . . . , n to system (5.7) for any matrices Hs > 0,
s = 1, . . . , n,

2) successive approximations

C(j+1)
s = Hs +

n∑

j=1

∞∑

k=1
qls(k)NT

s (k)CT
lsC

(j)
l ClsNs(k) > 0,

C(0)
s = Θ, j = 0, 1, 2, . . . , s = 1, . . . , n,

converge.

Theorem 5.2. Suppose that the conditions of Lemmas 3.1 and 3.2 are satisfied. Then
in order for the trivial solution to system (1.1) to be L2-stable, it is sufficien that for
some symmetric positive definite matrices Cs, s = 1, . . . , n, the matrix inequalities

Cs =
n∑

l=1

∞∑

k=1
qls(k)NT

s (k)CT
lsC

(j)
l ClsNs(k) > 0, s = 1, . . . , n

hold.

6. EXAMPLE

Let us investigate the stability of solutions of the difference equation

xk+1 = a(ξ)xk, k = 0, 1, . . . ,

with jumps of solutions
xk+1 = c xk, k = 0, 1, . . . ,

where ξ is a semi-Markov chain that can take three possible states θ1, θ2, θ3. Denote

a(ξ = θs) ≡ as, s = 1, 2, 3,

and suppose that the transition intensities are given as

q12(1) = a, q12(2) = b, q12(3) = 1− (a+ b),
q13(1) = e, q13(2) = d, q13(3) = 1− (e+ d),
q23(1) = k, q23(2) = l, q23(3) = 1− (k + l).
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Then system (4.4) takes the form

b1 = E
(2)
1
{
X0
}

+ c2(a a2
2 + ba4

2 + (1− (a+ b))a6
2
)
b2

+ c2(ea2
3 + da4

3 + (1− (e+ d)a6
3)
)
b3,

b2 = E
(2)
2
{
X0
}

+ c2(a a2
1 + ba4

1 + (1− (a+ b))a6
1)b1

+ c2(ka2
3 + la4

3 + (1− (k + l)a6
3))b3,

b3 = E
(2)
3
{
X0
}

+ c2(e a2
1 + da4

1 + (1− (e+ d))a6
2)b2.

Then, conditions of L2-stability can be expressed in the form

c4 a2
2 a

2
1
(
a+ ba2

2 +
(
a+ ba2

2 + (1− a− b)
)
a4

2
)(
a+ ba2

1 + (1− a− b)a4
1
)
< 1,

c6a2
1a

2
2a

2
3
(
a+ ba2

1 + (1− a− b)a4
1
)

·
(
k + ba2

2 + (1− k − l)a4
2
)(
e+ da2

3 + (1− e− d)a4
3
)

+ c6a2
1a

2
2a

2
3
(
e+ da2

1 + (1− e− d)a4
1
)

·
(
a+ ba2

2 + (1− a− b)a4
2
)(
k + la2

3 + (1− k − l)a4
3
)

+ c4a2
1a

2
3
(
e+ da2

1 + (1− e− d)a4
1
)
(e+ da2

3 + (1− e− d)a4
3)

+ c4a2
2a

2
3
(
k + la2

2 + (1− k − l)a4
2
)(
k + la2

3 + (1− k − l)a4
3
)

+ c4a2
1a

2
2
(
a+ ba2

1 + (1− a− b)a4
2
)
(a+ ba2

1 + (1− a− b)a4
1) < 1.

7. CONCLUSION

This work develops and solves the problem of L2-stability of the trivial solution to the
system of difference equations with coefficients depending on a semi-Markov chain.
Dynamic systems of this kind can be very well used for modeling security and risk
management in cyberspace. In particular, as a subspace, one can consider health, the
environment, economic cyberspace and others. Cyberspace has become the arena of
numerous conflicts, differing in form and method, intensity and degree of threats,
which they carry. Cyberattacks and data violations are growing in various industries.
For example, since healthcare data is unique, it makes the privacy and security so
important. New challenges and threats in cyberspace force us to look for new solutions
and, accordingly, new models that allow us to predict the situation in advance. This
caused the investigation in the field of difference equations with random parameters
that can serve as a mathematical model of the problems under discussion. In our next
works, we propose to develop specific models using the above material and provide
computer implementation with a user-friendly interface.
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