PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of flood hydrograph using the modified Cunge-Muskingum method in an ungauged basin: a case study in the Kulsi River basin, India

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Cunge-Muskingum routing model is one of the most popular and widely used models for hydrologic channel flood routing. The application of Cunge-Muskingum model to an ungauged basin is hindered by the lack of hydro-meteorological data. In the present study, a method is proposed to predict the outflow hydrograph of an ungauged basin as a solution to this problem. The Cunge-Muskingum method is modified, considering the non-prismatic complex natural channel. The Soil Conservation Service Curve Number rainfall-runoff model is employed to obtain the inflow and lateral inflow hydrographs of the ungauged basins, and the Modified Cunge-Muskingum model is employed to anticipate the flood hydrograph at the outlet of the ungauged basin. The proposed approach is employed to the Kulsi River Basin, India, hypothetically treated as an ungauged basin, and the results are compared with the observed data at the outlet of the basin. The performance of the model is evaluated based on RMSE (50.34 m3/s), peak flow error (39.73%), peak flow time error (-3.44%), total volume error (7.36%), relative error (7.36%), mean absolute error (33.5%), correlation coefficient (0.785), coefficient of efficiency (0.59) and Kling-Gupta efficiency (0.66).The results reveal that the proposed Modified Cunge-Muskingum model is an efficient predictor of the flood hydrograph at the outlet of the ungauged basin.
Twórcy
  • Civil Engineering Department, Assam Engineering College, India
  • Assam down town University, India
  • Civil Engineering Department, Assam Engineering College, India
Bibliografia
  • Akbari G.H., Barati R., 2012, Comprehensive analysis of flooding in unmanaged catchments, Proceedings of the Institution of Civil Engineers: Water Management, 165 (4), 229-238, DOI: 10.1680/wama.10.00036.
  • Akhondi E., 2001, Analyzing curve number model in estimating flood by using geographical information systems, MA dissertation, The Faculty of Natural Resources and Maritime Sciences, Tarbiat-e-Modarres University.
  • Al-Humoud J.M., Esen I.I, 2006, Approximate methods for the estimation of the Muskingum flood routing parameters, Water Resources Management, 20 (6), 979-990, DOI: 10.1007/s11269-006-9018-2.
  • Barati R., 2010, Investigation of flood routing methods in natural waterways, (in Persian), Master's Thesis, The University of Sistan and Baluchestan Graduate School.
  • Bharali B., Misra U.K, 2020a, Development of a diffusive wave food routing model for an ungauged basin: a case study in Kulsi River Basin, India, Modeling Earth Systems and Environment, 7, 1053-1069, DOI: 10.1007/s40808-020-00952-1.
  • Bharali B., Misra U.K., 2020b, Investigation of flood routing using Variable Parameter Kinematic Wave Model (VPKWM) for non-prismatic natural channel in an ungauged basin, Journal of Applied Engineering Sciences, 10 (23), 111-118, DOI: 10.2478/jaes-2020-0017.
  • Bharali B., Misra U.K., 2021, An approach for prediction of flood hydrograph at outlet of an ungauged basin using modified dynamic wave model, ISH Journal of Hydraulic Engineering, DOI: 10.1080/09715010.2021.1901250.
  • Chen J.J., Yang X.H., 2007, Optimal parameter estimation for Muskingum model based on Gray-encoded accelerating genetic algorithm, Communications in Nonlinear Science and Numerical Simulation, 12 (5), 849-858 DOI: 10.1016/j.cnsns.2005.06.005.
  • Cheng K.-S., Lien Y.-T., Wu Y.-C., 2017, On the criteria of model performance evaluation for real-time flood forecasting, Stochastic Environmental Research and Risk Assessment, 31, 1123-1146, DOI: 10.1007/s00477-016-1322-7.
  • Choudhury P., Shrivastava R.K., Narulkar S.M., 2002, Flood routing in river networks using equivalent Muskingum inflowm Journal of Hydrologic Engineering, 7 (6), 413-419, DOI: 10.1061/(ASCE)1084-0699 (2002)7:6(413).
  • Chow V.T., 1959, Open channel hydraulics, McGraw-Hill, 680 pp.
  • Chow V.T., Maidment D.R., Mays L.W., 1988, Applied hydrology, McGraw-Hill Book Company, 572 pp.
  • Chu H.-J., Chang L.-C., 2009, Applying particle swarm optimization to parameter estimation of the nonlinear Muskingum model, Journal of Hydrologic Engineering, 14 (9), 1024-1027, DOI: 10.1061/(ASCE)HE.1943-5584.0000070.
  • Corzo G., Solomatine D., 2007, Baseflow separation techniques for modular artificial neural network modelling in flow forecasting, Hydrological Sciences Journal, 52 (3), 491-507, DOI: 10.1623/hysj.52.3.491.
  • Cunge J.A., 1969. On the subject of a flood propagation computational method (Muskingum method), Journal of Hydraulic Research, 7 (2), 205-230, DOI: 10.1080/00221686909500264.
  • Das A., 2004, Parameter estimation for Muskingum models, Journal of Irrigation and Drainage Engineering, 130 (2), 140-147, DOI: 10.1061/(ASCE)0733-9437(2004)130:2(140).
  • Das A., 2007, Chance-constrained optimization-based parameter estimation for Muskingum models, Journal of Irrigation and Drainage Engineering, 133 (5), DOI: 10.1061/(ASCE)0733-9437(2007)133:5(487).
  • Fenton D.J., 2019, Flood routing methods, Journal of Hydrology, 570, 251-261, DOI: 10.1016/j.jhydrol.2019.01.006.
  • Fread D.L., 1981, Flood routing: a synopsis of past, present, and future capability, [in:] Rainfall-runoff relationship, Proceedings of the International Symposium on Rainfall-runoff Modelling, V.P. Singh (ed.), Mississippi State University, U.S.A.
  • Fread D.L., 1983, A "Unified" Coefficient Routing Model, available at https://www.nws.noaa.gov/ohd/hrl/hsmb/docs/hydraulics/papers_before_2009/hl_173.pdf (data access 21.10.2021).
  • Geem Z.W., 2006, Parameter estimation for the nonlinear Muskingum model using the BFGS technique, Journal of Irrigation and Drainage Engineering, 132 (5), 474-478, DOI: 10.1061/(ASCE)0733-9437(2006)132:5(474).
  • Geetha K., Mishra S.K., Eldho T.I., Rastogi A.K., Pandey R.P., 2007, Modifications to SCS-CN method for long-term hydrologic simulation, Journal of Irrigation and Drainage Engineering, 133 (5), 475-486, DOI: 10.1061/(ASCE)0733-9437(2007)133:5(475).
  • Green I., Stephenson D., 1985, Comparison of urban drainage models for use in South Africa, WRC Report No 115/6/86, Water Research Commission, Pretoria, RSA.
  • Gupta H.V., Kling H., Yilmaz K.K., Martinez G.F., 2009, Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, Journal of Hydrology, 377 (1-2), 80-91, DOI: 10.1016/j.jhydrol.2009.08.003.
  • Gupta P.K., Punalekar S., Panigrahy S., Sonakia A., Parihar J.S., 2012, Runoff modeling in an agro-forested watershed using remote sensing and GIS, Journal of Hydrologic Engineering, 17 (11), 1255-1267, DOI: 10.1061/(ASCE)HE.1943-5584.0000466.
  • Haktanir T., Ozmen H., 1997, Comparison of hydraulic and hydrologic routing on three long reservoirs, Journal of Hydraulic Engineering, 123 (2), 153-156, DOI: 10.1061/(ASCE)0733-9429(1997)123:2(153).
  • Hashmi D., 1993, Flow routing model for Upper Indus River (Pakistan), Ph.D. Dissertation, The University of British Columbia.
  • Henderson F.M., 1966, Open channel flow, Prentice Hall, New Jersey, 522 pp.
  • Kim J.H., Geem Z.W., Kim E.S., 2001, Parameter estimation of the nonlinear Muskingum model using harmony search, Journal of the American Water Resources Association, 37 (5), 1131-1138, DOI: 10.1111/j.1752-1688.2001.tb03627.x.
  • Kling H., Fuchs M., Paulin M., 2012. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios, Journal of Hydrology, 424-425, 264-277, DOI: 10.1016/j.jhydrol.2012.01.011.
  • Kshirsagar M.M., Rajagopalan B., Lal U., 1995, Optimal parameter estimation for Muskingum routing with ungauged lateral inflow, Journal of Hydrology, 169 (1-4), 25-35, DOI: 10.1016/0022-1694(94)02670-7.
  • Kundzewicz Z.W., Strupczewski W.G., 1982, Approximate translation in the Muskingum model, Hydrological Sciences Journal, 27 (1), 19-27, DOI: 10.1080/02626668209491082.
  • Li M., Shao Q., Zhang L., Chiew F.H.S., 2010, A new regionalization approach and its application to predict flow duration curve in ungauged basins, Journal of Hydrology, 389 (1), 137-145, DOI: 10.1016/j.jhydrol. 2010.05.039.
  • Li W., Lin K., Zhao T., Lan T., Chen X., Du H., Chen H., 2019, Risk assessment and sensitivity analysis of flash floods in ungauged basins using coupled hydrologic and hydrodynamic models, Journal of Hydrology, 572, 108-120, DOI: 10.1016/j.jhydrol.2019.03.002.
  • Lu F., Jiang Y.Z., Wang H., Niu C.W., 2007, Application of multi-agent genetic algorithm to parameter estimation of Muskingum model, Journal of Hydraulic Engineering, 39 (3), 289-294.
  • Luo J.G., Xie J.C., 2010, Parameter estimation for nonlinear Muskingum model based on immune clonal selection algorithm, Journal of Hydrologic Engineering, 15 (10), 844-851, DOI: 10.1061/(ASCE)HE.1943-5584.0000244.
  • McCarthy G.T., 1938, The unit hydrograph and flood routing, Conference of North Atlantic Division, US Army Corps of Engineers, New London, CT.
  • Mishra S.K., Geetha K., Rastogi A.K., Pandey R.P., 2005, Long-term hydrologic simulation using storage and source area concepts, Hydrological Processes, 19 (14), 2845-2861, DOI 10.1002/hyp.5735.
  • Mishra S.K., Jain M.K., Singh V.P., 2004, Evaluation of the SCS-CN-based model incorporating antecedent moisture, Water Resources Management, 18, 567-589, DOI: 10.1007/s11269-004-8765-1.
  • Mishra S.K., Singh V.P., 1999, Another look at SCS-CN method, Journal of Hydrologic Engineering, 4 (3), 257-264, DOI: 10.1061/(ASCE)1084-0699(1999)4:3(257).
  • Moriasi D.N., Arnold J.G., Liew M.W.V., Bingner R.L., Harmel R.D., Veith T.L., 2007, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Transactions of the American Society of Agricultural and Biological Engineers, 50 (3), 885-900, DOI: 10.13031/2013.23153.
  • Nash J.E., Sutcliffe J.V., 1970, River flow forecasting through conceptual models. Part I. A discussion of principles, Journal of Hydrology 10 (3), 282-290, DOI: 10.1016/0022-1694(70)90255-6.
  • O’Donnell T., 1985, A direct three-parameter Muskingum procedure incorporating lateral inflow, Hydrologic Science Journal, 30 (4), DOI: 10.1080/02626668509491013.
  • Panahi A., 2013, Evaluating SCS-CN Method in Estimating the Amount of Runoff in Soofi Chay basin Using GIS, Life Science Journal, 10 (5s), 271-277.
  • Reshma T., Kumar P.S., Babu M.J.R.K., Kumar K.S., 2010, Simulation of runoff in watersheds using SCS-CN AND Muskingum-Cunge methods using remote sensing and geographical information systems, International Journal of Advanced Science and Technology, 25, 31-42.
  • Roberson J.A., Cassidy J.J., Chaudhry M.H., 1988, Hydraulic engineering, Houghton Mifflin Company, Boston, 662 pp.
  • Rogelis M.C., Werner M., Obregón N., Wright N., 2016, Hydrological model assessment for flood early warning in a tropical high mountain basin, Hydrology and Earth System Sciences. Discussions, DOI: 10.5194/hess-2016-30.
  • Schönfelder L.H., Bakken T.H., Alfredsen K., Adera A.G., 2017, Application of HYPE in Norway, SINTEF Energy Research Report, available at http://hdl.handle.net/11250/2499427 (data access 21.10.2021).
  • Schulze R., 1995, Hydrology and agrohydrology: a text to accompany the ACRU 3.00 agrohydrological modelling system, [in:] WRC Report No TT 69/95, Water Research Commission, Pretoria, RSA.
  • Singh V.P., Frevert D.K. (eds.), 2005, Watershed models, CRC Press, Boca Raton, 687 pp.
  • Singh V.P., McCann R.C., 1980, Some notes on Muskingum method of flood routing, Journal of Hydrology, 48 (3-4), 343-361, DOI: 10.1016/0022-1694(80)90125-0.
  • Sivapalan M., Takeuchi K., Franks S.W., Gupta V.K., Karambiri H., Lakshmi V., Liang X., McDonnell J.J., Mendiondo E.M., O'Connell P.E., 2003. IAHS decade on predictions in ungauged basins (PUB), 2003-2012: Shaping an exciting future for the hydrological sciences, Hydrological Sciences Journal, 48 (6), 857-880, DOI: 10.1623/hysj.48.6.857.51421.
  • Soulis K.X., Valiantzas J.D., 2012, SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds – the two-CN system approach, Hydrology and Earth System Sciences, 16 (3), 1001-1015, DOI: 10.5194/hess-16-1001-2012.
  • Tewolde M.H., Smithers J.C., 2006, Flood routing in ungauged catchments using Muskingum methods, Water SA, 32 (3), 379-388, DOI: 10.4314/wsa.v32i3.5263.
  • Xiao B., Wang Q.-H., Fan J., Han F.-P., Dai Q.-H., 2011, Application of the SCS-CN model to runoff estimation in a small watershed with high spatial heterogeneity, Pedosphere, 21 (6), 738-749, DOI: 10.1016/S1002-0160(11)60177-X.
  • Yadav M., Wagener T., Gupta H., 2007, Regionalization of constraints on expected watershed response behaviour for improved predictions in ungauged basins, Advances in Water Resources, 30 (8), 1756-1774, DOI: 10.1016/j.advwatres.2007.01.005.
  • Yang X.H., Li J.Q., 2008, Chaos high efficient genetic algorithm for parameter optimization of Muskingum routing model, Journal of Hydrologic Engineering, 27 (2), 40-44.
  • Yoo C., Lee J., Lee M., 2017, Parameter estimation of the Muskingum channel Flood-Routing model in ungauged channel reaches, Journal of Hydrologic Engineering, 22 (7), DOI: 10.1061/(ASCE)HE.1943-5584.0001507.
  • Yoon J., Padmanabhan G., 1993, Parameter estimation of linear and nonlinear Muskingum models, Journal of Water Resources Planning and Management, 119 (5), 600-610, DOI: 10.1061/(ASCE)0733-9496(1993)119:5(600).
  • Yu B., 1998, Theoretical justification of SCS method for runoff estimation, Journal of Irrigation and Drainage Engineering, 124 (6), 234-238, DOI: 10.1061/(ASCE)0733-9437(1998)124:6(306).
  • Yu B., 2012, Validation of SCS method for runoff estimation, Journal of Hydrologic Engineering, 17 (11), 1158-1163, DOI: 10.1061/(ASCE)HE.1943-5584.0000484.
  • Zhan X., Huang M.L., 2004, ArcCN-Runoff: an ArcGIS tool for generating curve number and runoff maps, Environmental Modelling and Software, 19 (10), 875-879, DOI: 10.1016/j.envsoft.2004.03.001.
  • Zlatanović N., Gavrić S., 2013, Comparison of an automated and manual method for calculating storm runoff response in ungauged catchments in Serbia, Journal of Hydrology and Hydromechanics, 61 (3), 195-201, DOI: 10.2478/johh-2013-0025.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce6a81c0-5913-4d0a-b174-900a5c738d2d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.