PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Effect of Soil Management Practices on the Mineralization of Organic Matter and Quality of Sandy Soils

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to determine the effect of soil management systems of Brunic Arenosols on the total content of organic carbon and its fraction susceptible to oxidation in comparison with the soils under forests. The samples for study were taken from the humus horizon at the sites located in the forests and soils from little midforest cultivated fields (hunting plots). The agrotechnical treatments increased the content of the plant-available forms of P, K and Mg in the soils of most hunting plots in comparison to the forest soils. In the arable horizon of the hunting plots, t a varied total content of organic carbon and its fraction susceptible to oxidation was found. The cultivation of soil in the hunting plots caused a decrease in the content of total organic carbon as well as its labile and non-labile fraction. In order to evaluate the carbon transformation in the soil of the cultivated plots against the forest (reference soil), the Carbon Management Index (CMI) was used. The decay rate of soil organic matter in a natural forest was lower than in the agricultural fields. A long-term tillage of Brunic Arenosols contributed to the degradation of the pool of organic carbon in sandy-textured soil.
Rocznik
Strony
217--223
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • UTP University of Science and Technology, Department of Biogeochemistry and Soil Science, ul. Bernardyńska 6, 85-029 Bydgoszcz, Poland
  • UTP University of Science and Technology, Department of Biogeochemistry and Soil Science, ul. Bernardyńska 6, 85-029 Bydgoszcz, Poland
  • UTP University of Science and Technology, Department of Environmental Engineering, ul. Sucha 9, Bydgoszcz, Poland
  • UTP University of Science and Technology, Department of Biogeochemistry and Soil Science, ul. Bernardyńska 6, 85-029 Bydgoszcz, Poland
Bibliografia
  • 1. Blair G.J., Blair N., Lefroy R.D.B., Conteh A., Hejko D. 1997. Relationships between KMnO4 oxidizable C and soil aggregate stability and the derivation of a carbon management index. in: Drozd J., Gonet S.S., Senesi N. Weber J. (Eds). The role of humic substances in the ecosystems and in environmental protection, 227–232.
  • 2. Blair G.J., Lefroy R.D.B., Lisle L. 1995. Soil carbon fractions, based on their degree of oxidation and the development of a carbon management index. Australian Journal of Agricultural Research, 46: 1459–1466.
  • 3. Cieścińska B. 2007a. Comparison of carbon management indexes assayed for soil under various crop rotation and fertilization systems. Humic Substances Ecosystems, 7: 45–49.
  • 4. Cieścińska B. 2007b. Use of indices to evaluate the condition of organic matter of soils. Zeszyty Problomowe Postępu Nauk Rolniczych, 520: 587–592. (in Polish with English abstract).
  • 5. Conteh A., Blair G.J., Lefroy R.D.B., Whitbread A. 1999. Labile organic carbon determined by permanganate oxidation and its relationships to other measurements of soil organic carbon. Humic Substances in the Environment, 1: 3–15.
  • 6. Gałka B., Łabaz B. 2014. Skład frakcyjny materii organicznej powierzchniowych poziomów próchnicznych gleb leśnych Gór Stołowych. Sylwan, 158, 1: 18–25. (in Polish with English abstract).
  • 7. Halpern M.T., Whalen J.K. Madramootoo C.A. 2010. Long-term tillage and residue management influences soil C and N dynamics. Soil Science Society of America Journal, 74: 1211–1217.
  • 8. Haynes R.J. 2005. Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Advances in Agronomy, 85, 221–268.
  • 9. Kainulainen P., Holopainen J.K. 2002. Concentrations of secondary compounds in Scots pine needles at different stages of decomposition. Soil Biology and Biochemistry, 34,1: 37–42.
  • 10. Kazlauskaite-Jadzevice A., Tripolskaja L. Volungevicius J., Baksiene E. 2019. Impact of land use change on organic carbon sequestration in Arenosol. Agricultural and Food Science, 28: 9–17.
  • 11. Kondratowicz-Maciejewska K., Kobierski M. 2012. Effect of Brunic Arenosols use on selected physicochemical properties in organic matter. Soil Science Annual, 63,2: 19–24. (in Polish with English abstract).
  • 12. Krishna M.P., Mohan M. 2017. Litter decomposition in forest ecosystems: a review. Energy, Ecology and Environment, 2: 236–249.
  • 13. Lefroy R.D.B., Blair G.J., Strong W.M. 1993. Changes in soil organic matter with cropping as measured by organic carbon fraction and 13C natural isotope abundance. Plant and Soil, 155/156: 399–402.
  • 14. Łoginow W., Wiśniewski W., Gonet S.S., Cieścińska B. 1987. Fractionation of organic carbon based on susceptibility to oxidation. Polish Journal of Soil Science, 20, 1: 47–52.
  • 15. Murty D., Kirschbaum M.U.F., Mcmurtrie R.E., Mcgilvray H. 2002. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Global Change Biology, 8: 105–123.
  • 16. Parzych A., Mochnacký S., Sobisz Z.1, Kurhaluk N., Polláková N. 2017. Accumulation of heavy metals in needles and bark of Pinus species. Folia Forestalia Polonica. Serie A. Forestry, 59, 1: 34–44.
  • 17. Sapek B. 2009. Preventing losses and organic carbon sequestration in meadow soils. Inżynieria. Ekologiczna, 21: 48–59. (in Polish with English abstract).
  • 18. Sienkiewicz S., Żarczyński P., Krzebietke S. 2011. Effect of land use of fields excluded from cultivationon soil content of available nutrients. Journal of Elementology, 16, 1: 75–84.
  • 19. Skjemstad J. O., Swift R.S. McGowan J.A. 2006. Comparison of the particulate organic carbon and permanganate oxidation methods for estimating labile soil organic carbon. Australian Journal of Soil Research, 44, 3: 255–263.
  • 20. Staaf H, Berg B. 1982. Accumulation and release of plant nutrients in decomposing scots pine needle litter. Long-term decomposition in a Scots pine forest II. Canadian Journal of Botany, 60: 1561–1568.
  • 21. Stanek-Tarkowska J., Czyż E.A., Dexter A.R, Sławiński C. 2018. Effects of reduced and traditional tillage on soil properties and diversity of diatoms under winter wheat. International Agrophysics, 32, 403–409.
  • 22. Strączyńska S., Strączyński S., Cieścińska B., Gwiżdż M. 2009. Properties of organic matter in the surface horizon of anthropogenic soils in the region of Bełchatów. Roczniki Gleboznawcze, Soil Science Annual, 60, 3: 139–144. (in Polish with English abstract).
  • 23. Szombathova N. 1999. Susceptibility to oxidation with KMnO4 solutions of organic matter in soils under various farming systems. Humic Substances Ecosystems, 3: 105–109.
  • 24. van Eerd L.L., Congreves K.A., Hayes A., Verhallen A., Hooker D.C. 2014. Long-term tillage and crop rotation effects on soil quality, organic carbon, and total nitrogen. Canadian Journal of Soil Science, 94,3: 303–315.
  • 25. Vaseneva V.I., Stoorvogela J.J., Vasenev I.I. 2013. Urban soil organic carbon and its spatial heterogeneity in comparison with natural and agricultural areas in the Moscow region. Catena, 107, 96–102.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce63f8de-4fe0-4050-a221-28156a708b5c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.