Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This research aims at illustrating the optimal functions of removing copper ions in aqueous solution by means of the electrocoagulation process in which portable solar power generators are used as renewable energy. A solar photovoltaic cell (PV), producing approximately 48A current intensity for 4-7 h per day, was sufficient to charge the lithium batteries completely during the day. This system was connected directly to the electrocoagulation tank. The Box-Behnken design (BBD) was applied to evaluate three effects of process factors: current density, the dose of electrolyte (NaCl), and application time. The results showed that an optimal efficiency of 99.01% Cu removal plus an energy savings of 1.039 kWh/m3 were obtained at a current density of 4 A/m2, the dosage of NaCl (electrolyte) of 1.87 g/L, and electrolysis time of 10 min. The chemical components of the sludge produced under these optimized conditions were determined by means of EDX. It was illustrated that the copper ions were the main elements of sludge, and nonhazardous compounds were contained. The PV-lithium battery system is considered to be an efficient alternative energy source toward sustainable development.
Czasopismo
Rocznik
Tom
Strony
103--111
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Faculty of Environment, Thuyloi University, 175 Tay Son, Dong Da district, Ha Noi, Viet Nam
autor
- Faculty of Environment, Thuyloi University, 175 Tay Son, Dong Da district, Ha Noi, Viet Nam
autor
- Faculty of Environment, Thuyloi University, 175 Tay Son, Dong Da district, Ha Noi, Viet Nam
Bibliografia
- 1. Al-Saydeh S.A., El-Naas M.H., Zaidi S.J. 2017. Copper removal from industrial wastewater: A comprehensive review. J. Ind. Eng. Chem, 56, 35–44. https://doi.org/10.1016/j.jiec.2017.07.026.
- 2. Balintova M., Holub M., Singovszka E. 2012. Study of iron, copper and zinc removal from acidic solutions by sorption. Chem. Eng. Trans, 28, 175–180.
- 3. Cucchiella F., D’Adamo I., Gastaldi M. 2016. Photovoltaic energy systems with battery storage for residential areas: an economic analysis. J. Clean. Prod, 131, 460–474. https://doi.org/10.1016/j.jclepro.2016.04.157.
- 4. Demcak S., Balintova M., Hurakova M., Frontasyeva M. V., Zinicovscaia I., Yushin N. 2017. Utilization of poplar wood sawdust for heavy metals removal from model solutions. Nov. Biotechnol. Chim, 16, 26–31. https://doi.org/10.1515/nbec-2017–0004.
- 5. Dermentzis K.K., Christoforidis A., Valsamidou E. 2011. Removal of nickel, copper, zinc and chromium from synthetic and industrial wastewater by electrocoagulation. Int. J. Environ. Sci, 1, 697–710. https://doi.org/10.6088/ijessi.00105020001.
- 6. Edebali S., Pehlivan E., 2016. Evaluation of chelate and cation exchange resins to remove copper ions. Powder Technol, 301, 520–525. https://doi.org/10.1016/j.powtec.2016.06.011.
- 7. El-Ashtoukhy E.-S.Z., Abdel-Aziz M.H. 2013. Removal of copper from aqueous solutions by cementation in a bubble column reactor fitted with horizontal screens. Int. J. Miner. Process, 121, 65–69. https://doi.org/10.1016/j.minpro.2013.03.001.
- 8. Ganiyu S.O., Brito L.R.D., De Araújo Costa E.C.T., Dos Santos E. V., Martínez-Huitle C.A. 2019. Solar photovoltaic-battery system as a green energy for driven electrochemical wastewater treatment technologies: Application to elimination of Brilliant Blue FCF dye solution. J. Environ. Chem. Eng, 7, 1–9. https://doi.org/10.1016/j.jece.2019.102924.
- 9. Gunatilake S.K., 2015. Methods of removing heavy metals from industrial wastewater. Multidiscip. Eng. Science Stud, 1, 12–18. https://doi.org/10.13140/RG.2.1.3751.1848.
- 10. Hossain M.A., 2012. Removal of copper from water by adsorption onto banana peel as bioadsorbent. Int. J. Geomate, 2, 227–234. https://doi.org/10.21660/2012.4.3c.
- 11. Hussin F., Abnisa F., Issabayeva G., Aroua M.K. 2017. Removal of lead by solar-photovoltaic electrocoagulation using novel perforated zinc electrode. J. Clean. Prod, 147, 206–216. https://doi.org/10.1016/j.jclepro.2017.01.096.
- 12. Kabuk H.A., Ilhan F., Avsar Y., Kurt U., Apaydin O., Gonullu M.T. 2014. Investigation of leachate treatment with electrocoagulation and optimization by response surface methodology. Clean-Soil Air Water, 42(5), 571–577 https://doi.org/DOI10.1002/clen.201300086.
- 13. Kamaraj R., Ganesan P., Lakshmi J., Vasudevan S. 2013. Removal of copper from water by electrocoagulation process-effect of alternating current (AC) and direct current (DC). Environ. Sci. Pollut. Res, 20(1), 399–412 https://doi.org/10.1007/s11356–012–0855–7.
- 14. Kanakaraju D., Ravichandar S., Lim Y.C. 2017. Combined effects of adsorption and photocatalysis by hybrid TiO2 /ZnO-calcium alginate beads for the removal of copper. J. Environ. Sci, 55, 214–223. https://doi.org/10.1016/j.jes.2016.05.043.
- 15. Khemila B., Merzouk B., Chouder A., Zidelkhir R., Leclerc J.P., Lapicque F. 2018. Removal of a textile dye using photovoltaic electrocoagulation. Sustain. Chem. Pharm, 7, 27–35. https://doi.org/10.1016/j.scp.2017.11.004.
- 16. Liang Y., Su J., Xi B., Yu Y., Ji D., Sun Y., Cui C., Zhu J. 2017. Life cycle assessment of lithiumion batteries for greenhouse gas emissions. Resour. Conserv. Recycl, 117, 285–293. https://doi.org/10.1016/j.resconrec.2016.08.028.
- 17. Millán M., Rodrigo M.A., Fernández-Marchante C.M., Díaz-Abad S., Peláez M.C., Cañizares P., Lobato J. 2018. Towards the sustainable powering of the electrocoagulation of wastewater through the use of solar-vanadium redox flow battery: A first approach. Electrochim. Acta ,270, 17–21. https://doi.org/10.1016/j.electacta.2018.03.055.
- 18. Montiel V., Valero D., Gallud F., García-García V., Expósito E., Iniesta J. 2018. Prospective applications of renewable energy-based electrochemical systems in wastewater treatment. Elsevier Inc., London.
- 19. Nawarkar C.J., Salkar V.D. 2019. Solar powered electrocoagulation system for municipal wastewater treatment. Fuel, 270, 222–226. https://doi.org/10.1016/j.fuel.2018.09.140.
- 20. Ölmez T., 2009. The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology. J. Hazard. Mater, 162(2–3), 1371–1378. https://doi.org/10.1016/j.jhazmat.2008.06.017.
- 21. Olya M.E., Pirkarami A. 2013. Electrocoagulation for the removal of phenol and aldehyde contaminants from resin effluent. Water Sci. Technol, 68, 1940–1949. https://doi.org/10.2166/wst.2013.439.
- 22. Parlak E., Arar Ö. 2018. Removal of copper (Cu2+) from water by sulfonated cellulose. J. Dispers. Sci. Technol, 39(10), 1403–1408. https://doi.org/10.10 80/01932691.2017.1405818.
- 23. Pirkarami A., Olya M.E., Tabibian S. 2013. Treatment of colored and real industrial effluents through electrocoagulation using solar energy. J. Environ. Sci. Heal. – Part A Toxic/Hazardous Subst. Environ. Eng, 48, 1243–1252. https://doi.org/10.1080/10934529.2013.776890.
- 24. Shrivastava A.K., 2009. A review on copper pollution and its removal from water bodies by pollution control technologies. Indian J. Environ. Prot. 29(6), 552–560.
- 25. Simsek I., Karatas M., Basturk E. 2013. Cu(II) removal from aqueous solution by ureolytic mixed culture (UMC). Colloids Surfaces B Biointerfaces, 102, 479–483. https://doi.org/10.1016/j.colsurfb.2012.09.027.
- 26. Üçtuğ F.G., Azapagic A. 2018. Environmental impacts of small-scale hybrid energy systems: Coupling solar photovoltaics and lithium-ion batteries. Sci. Total Environ, 643, 1579–1589. https://doi.org/10.1016/j.scitotenv.2018.06.290.
- 27. Vasudevan S., Jayaraj J., Lakshmi J., Sozhan G. 2009. Removal of iron from drinking water by electrocoagulation: Adsorption and kinetics studies. Korean J. Chem. Eng, 26(4), 1058–1064. https://doi.org/10.1007/s11814–009–0176–9.
- 28. Vasudevan S., 2012. Effects of alternating current (AC) and direct current (DC) in electrocoagulation process for the removal of iron from water. Can. J. Chem. Eng, 90(5), 1160–1169. https://doi.org/10.1002/cjce.20625.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce5d5e8c-c7b3-48be-adfb-06a2e7a2793c