PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-physical contact simulation in Vehicle applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Multi-physical contact behaviour is important in multiple disciplines related to the automotive industry. Nowadays battery-electric vehicles’ (BEV) thermal management systems deal with contact between bodies where mechanical, electric, and thermal interaction occurs. The battery thermal management itself is crucial for cell life, safety, and everyday vehicle performance. Thus, comprehensive and accurate simulation of the multi-physical contact is a vital part of vehicle development. The multi-physical contact is represented by two or more bodies under applied mechanical load and a current or heat conducted throughout the realized contact area. The amount of conducted current/heat or generated Joule heat is the function of the contact area as well as contact pressure, thus the structural simulation should be essential for such thermal management system simulations Most of the current full vehicle battery pack CFD cooling simulations simplified the multi-physical contact as ideal. Detailed contact modelling is time-consuming, hence not applicable for the full vehicle modelling. In this work, a feasible approach based on contact resistance curves was implemented. Furthermore, the work demonstrates the necessity of correct structural contact prediction for a joule heating and thermal solution.
Rocznik
Strony
369--374
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
  • Department of Mechanics, Materials and Machine Parts, Faculty of Transport Engineering, University of Pardubice, Czech Republic
autor
  • Department of Mechanics, Materials and Machine Parts, Faculty of Transport Engineering, University of Pardubice, Czech Republic
autor
  • Department of Transport Means and Diagnostics, Faculty of Transport Engineering, University of Pardubice, Czech Republic
Bibliografia
  • 1. ANSYS Fluent Theory Guide, release 12.0
  • 2. Beer, F.P., Johnston, E.R., 1992. Mechanics of Materials. 2nd edition. McGraw-Hill
  • 3. Budynas. R., Nisbett. K., 2008. Shigley's Mechanical Engineering Design. 8th edition. McGraw-Hill.
  • 4. Eid, J.C., Antonetti, V.W., 1986. Small Scale Thermal Contact Resistance of Aluminum against Silicon. in C. L. Tien, V. P. Carey, and J. K. Ferrel, Eds., Heat Transfer—1986, Vol. 2, Hemisphere, New York, 659–664.10.1615/IHTC8.320
  • 5. Frekers, Y., T. Helmig, E. M. Burghold, and R. Kneer, 2017. A numerical approach for investigating thermal contact conductance. International journal of thermal sciences, 121, 45-54.10.1016/j.ijthermalsci.2017.06.026
  • 6. Ghosh, Debashis, Kimberley King, Brian Schwemmin, and Douglas Zhu, 2010. Full hybrid electrical vehicle battery pack system design. CFD simulation and testing. SAE Technical Paper 2010, 1080.10.4271/2010-01-1080
  • 7. He, F., Li, X., & Ma, L. 2014. Combined experimental and numerical study of thermal management of battery module consisting of multiple Li-ion cells. International Journal of Heat and Mass Transfer, 72, 622-629.
  • 8. Immonen, E., Hurri, J. 2021. Incremental thermo-electric CFD modeling of a high-energy Lithium-Titanate Oxide battery cell in different temperatures: A comparative study. Applied Thermal Engineering, 197, 117260.
  • 9. Kogut, L., Etsion, I., 2003. A finite element based elastic-plastic model for the contact of rough surfaces. Tribol Trans, 46, 383-390, DOI: 10.1080/10402000308982641
  • 10. Lawn, B.R., Evans, A.G., 1977. A model for crack initiation in elastic/plastic indentation fields. Journal of material science, 12, 2195–2199, DOI: 10.1007/BF00552240
  • 11. Mahamud, R., Park, C. 2011. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity. Journal of Power Sources, 196(13), 5685-5696.
  • 12. Muller, V., Scurtu R., et al., 2019. Study of the influence of mechanical pressure on the performance and aging of Lithium-ion battery cells. Journal of Power Sources, 440, 227148, DOI: 10.1016/j.jpowsour.2019.227148
  • 13. Murashov, M.V., Panin, S.D., 2015. Numerical modelling of contact heat transfer problem with work hardened rough surfaces. International Journal of Heat and Mass Transfer, 90, 72-80.10.1016/j.ijheatmasstransfer.2015.06.024
  • 14. Oliver, W.C., Pharr, G.M., 2004. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research, 19, 3-20, DOI: 10.1557/jmr.2004.19.1.3
  • 15. Peterson, G.P., Fletcher, L.S., 1987. Thermal Contact Resistance of Silicon Chip Bonding Materials. Proceedings of the International Symposium on Cooling Technology for Electronic Equipment, Honolulu, 438–448.
  • 16. Pulugundla, G., Dubey, P., Srouji, A. 2019. Time-accurate CFD analysis of liquid cold plates for efficient thermal performance of electric vehicle Li-ion battery modules SAE Technical Paper, No. 2019-01-050010.4271/2019-01-0500
  • 17. Rogeon, Philippe, et al., 2007. Characterization of electrical contact conditions in spot welding assemblies. Journal of Materials Processing Technology, 117-124, DOI: 10.1016/j.jmatprotec.2007.04.127
  • 18. Saw, Lip Huat, Yonghuang Ye, Andrew AO Tay, Wen Tong Chong, Seng How Kuan, and Ming Chian Yew, 2016. Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling. Applied energy 177, 783-792.10.1016/j.apenergy.2016.05.122
  • 19. Siemens STAR-CCM+ Theory Guide, release 13.04.010
  • 20. Sutter, L., Berckmans G., et al., 2020. Mechanical behavior of Silicon-Graphite pouch cells under external compressive load: Implications and opportunities for battery pack design. Journal of Power Sources, 451, 227774. DOI: 10.1016/j.jpowsour.2020.227774
  • 21. Wang, J., Wang H., et al., 2015. Analysis of Al-steel resistance spot welding process by developing a fully coupled multi-physics simulation model. International Journal of Heat and Mass Transfer, 89, 1061-1072, DOI: 10.1016/j.ijheatmasstransfer.2015.05.086
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce5d2cf2-549b-4c1e-ad80-dfdf418f8633
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.