PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

WC-Co coatings and sinters modified with nano-sized tic microstructure – quantitative evaluation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The different concepts of WC-Co thermally sprayed coatings improvement may be considered and the application of nanoparticles, as the mechanical strengthening addition, is one of them. Nanostructured WC-Co coatings are characterized by higher hardness than the coatings formed from micrometric WC grains; whereas coatings with bimodal distribution of particles reveal greater wear resistance than the coatings obtained exclusively from nano-sized powders. Mixed effect of the matrix reinforcement by nanoparticles and strong fix of the micron-sized WC grains was proposed as a possible reason for enhanced wear resistance of bimodal coatings. In order to obtain a bimodal distribution of particles in the material standard WC-Co (83-17) powder was mixed with nanometric TiC powder (40–100 nm). The amount of TiC in powder mixtures was in the range from 1 to 7 wt.%. The mixtures were deposited on steel substrate using HVAF method and also hot pressed in vacuum. The microstructure of obtained coatings and sinters was quantitatively evaluated. Sinters revealed more homogenous distribution of the nano-sized TiC particles than the coatings. The addition of nano-sized TiC in the case of coatings has led to the decrease of its porosity. The agglomeration of nano-sized TiC particles in the coatings results in the decrease of material’s hardness.
Słowa kluczowe
Twórcy
autor
  • Institute of Materials Science, Silesian University of Technology, Krasińskiego Street 8, 40-019 Katowice, Poland
autor
  • Institute of Materials Science, Silesian University of Technology, Krasińskiego Street 8, 40-019 Katowice, Poland
autor
  • Institute of Materials Science, Silesian University of Technology, Krasińskiego Street 8, 40-019 Katowice, Poland
Bibliografia
  • 1. Berger L. M., Application of hardmetals as thermal spray coatings, Int. J. Refract. Met. Hard Mater. (2015). doi:10.1016/j.ijrmhm.2014.09.029.
  • 2. Bolelli G., Berger L. M., Bonetti M., Lusvarghi L., Comparative study of the dry sliding wear behaviour of HVOF-sprayed WC-(W,Cr)2C-Ni and WC-CoCr hardmetal coatings, Wear. (2014). doi:10.1016/j.wear.2013.11.001.
  • 3. Csanádi T., Novák M., Naughton-Duszová A., Dusza J., Anisotropic nanoscratch resistance of WC grains in WC-Co composite, Int. J. Refract. Met. Hard Mater. (2015). doi:10.1016/j.ijrmhm.2015.03.005.
  • 4. Gorlach I.A., The Application of High Velocity Air Fuel Process for the Deposition Coatings, R&D Journal 24 (2008).
  • 5. Guilemany J.M., Dosta S., Miguel J.R., The enhancement of the properties of WC-Co HVOF coatings through the use of nanostructured and microstructured feedstock powders, Surf. Coatings Technol. (2006). doi:10.1016/j.surf-coat.2006.01.041.
  • 6. Hulka I., Şerban V. A., Secoşan I., Vuoristo P., Niemi K., Wear properties of CrC-37WC-18M coatings deposited by HVOF and HVAF spraying processes, Surf. Coatings Technol. 210 (2012) 15–20. doi:10.1016/j.surfcoat.2012.07.077.
  • 7. Jacobs L., Hyland M.M., De Bonte M., Study of the Influence of Microstructural Properties on the Sliding-Wear Behavior of HVOF and HVAF Sprayed WC-Cermet Coatings, J. Therm. Spray Technol. 8 (1999) 125.
  • 8. Lin N., He Y., Wu C., Liu S., Xiao X., Jiang Y., Influence of TiC additions on the corrosion behaviour of WC-Co hardmetals in alkaline solution, Int. J. Refract. Met. Hard Mater. (2014). doi:10.1016/j. ijrmhm.2014.05.009.
  • 9. Liu S., Sun D., Fan Z., Yu H.Y., Meng H.M., The influence of HVAF powder feedstock characteristics on the sliding wear behaviour of WC-NiCr coatings, Surf. Coatings Technol. 202 (2008) 4893–4900. doi:10.1016/j.surfcoat.2008.03.014.
  • 10. Mateen A., Saha G.C., Khan T.I., Khalid F.A., Tribological behaviour of HVOF sprayed near-nanostructured and microstructured WC-17wt.%Co coatings, Surf. Coatings Technol. (2011). doi:10.1016/j.surfcoat.2011.07.075.
  • 11. Milanti A., Matikainen V., Koivuluoto H., Bolelli G., Lusvarghi L., Vuoristo P., Effect of spraying parameters on the microstructural and corrosion properties of HVAF-sprayed Fe–Cr–Ni–B–C coatings, (2015). doi:10.1016/j.surfcoat.2015.07.018.
  • 12. Myalska H., Moskal G., Szymański K., Microstructure and properties of WC-Co coatings, modified by sub-microcrystalline carbides, obtained by different methods of high velocity spray processes, Surf. Coatings Technol. 260 (2014) 303–309. doi:10.1016/j.surfcoat.2014.07.097.
  • 13. Park S.Y., Kim M.C., Park C.G., Mechanical properties and microstructure evolution of the nano WC-Co coatings fabricated by detonation gun spraying with post heat treatment, Mater. Sci. Eng. A. 448–451 (2007) 894–897. doi:10.1016/j. msea.2006.02.444.
  • 14. Poblano-Salas C., Cabral-Miramontes J., Gallegos- Melgar A., Ruiz-Luna H., Aguilar-Escobar J.D., Espinosa-Arbelaez D.G., Espinoza-Beltrán F., Trapaga-Martínez G., Muñoz-Saldaña J., Effects of VC additions on the mechanical properties of bimodal WC–Co HVOF thermal sprayed coatings measured by nanoindentation, Int. J. Refract. Met. Hard Mater. 48 (2015) 167–178. doi:10.1016/j. ijrmhm.2014.08.016.
  • 15. Qiao Y., Fischer T.E., Dent A., The effects of fuel chemistry and feedstock powder structure on the mechanical and tribological properties of HVOF thermal-sprayed WC-Co coatings with very fine structures, Surf. Coatings Technol. (2003). doi:10.1016/S0257-8972(03)00242-1.
  • 16. Rodríguez M.A., Gil L., Camero S., Fréty N., Santana Y., Caro J., Surface & Coatings Technology Effects of the dispersion time on the microstructure and wear resistance of WC / Co-CNTs HVOF sprayed coatings, Surf. Coat. Technol. 258 (2014) 38–48. doi:10.1016/j.surfcoat.2014.10.014.
  • 17. Stewart D.A., Shipway P.H., Mccartney D.G., Abrasive wear behaviour of conventional and nanocomposite HVOF-sprayed WC–Co coatings, Wear. 225229 (1999) 789–798.
  • 18. Sudaprasert T., Shipway P.H., McCartney D.G., Sliding wear behaviour of HVOF sprayed WC-Co coatings deposited with both gas-fuelled and liquid-fuelled systems, Wear. 255 (2003) 943–949. doi:10.1016/S0043-1648(03)00293-X.
  • 19. Szala J., Instrukcja obsługi Met-Ilo, Silesian University of Technology, Gliwice, Poland, 2008; Repozytorium Publikacji Naukowych Politechniki Śląskiej; oai:repolis.bg.polsl.pl:7579.
  • 20. Upadhyaya G.S., CEMENTED TUNGSTEN CARBIDES Production, Properties, and Testing, (n.d.).
  • 21. Xie M., Zhang S., Li M., Comparative investigation on HVOF sprayed carbide-based coatings, Appl. Surf. Sci. (2013). doi:10.1016/j.apsusc.2013.03.010.
  • 22. Zeoli N., Gu S., Kamnis S., Numerical simulation of in-flight particle oxidation during thermal spraying, Comput. Chem. Eng. (2008). doi:10.1016/j. compchemeng.2007.08.008.
  • 23. Zhang S., Sun D., Fu Y., Du H., Toughening of hard nanostructural thin films: A critical review, Surf. Coatings Technol. (2005). doi:10.1016/j.surfcoat.2004.10.020.
  • 24. Żórawski W., The microstructure and tribological properties of liquid-fuel HVOF sprayed nanostructured WC–12Co coatings, Surf. Coat. Technol. 220 (2013) 276–281.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce5bceb3-c776-43be-9dea-5e64cdea676c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.