PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of a UAV-based system for the semi-automatic estimation of the volume of earthworks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the challenges faced by surveyors in acquisition of accurate spatial data for mining applications is the risk involved in acquiring data in rugged terrains and difficult or inaccessible areas. With the advent of modern technology, accurate geospatial data can now be safely obtained for proper mining documentation periodically. The use of Unmanned Aerial Vehicles (UAVs) for data acquisition in mine surveying has been a viable means of obtaining reliable geospatial data rapidly and efficiently. The main goal of this study is to develop a semi-automatic UAV-based system for the acquisition of spatial data required for the estimation of the volume of earthworks. A DJI Phantom 4 quadcopter was used for the acquisition of image data of the project site, while the images were processed into a Digital Elevation Model (DEM) using Pix4Dmapper v2.0.1, which was then imported into the MATLAB-based system developed for the automatic estimation of the volume of earthworks. The volume obtained from the automated system was thus compared with the volume obtained directly from the Pix4Dmapper software, having specified a contour interval of 1 and an allowable error rate of ±3% as the standard error. While ±1.02% error was observed in the volume estimated using the Pix4Dmapper, the developed automated system yielded an estimated precision of ±0.81% in its volume estimation, which proves to be more robust for automatic volume estimation in terms of accuracy and precision.
Rocznik
Tom
Strony
21--28
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • Department of Surveying and Geoinformatics, Federal University of Technology, Minna, Nigeria
  • Department of Surveying and Geoinformatics, Federal University of Technology, Minna, Nigeria
  • Department of Surveying and Geoinformatics, Federal University of Technology, Minna, Nigeria
  • Department of Surveying and Geoinformatics, Moshood Abiola Polytechnic, Abeokuta, Nigeria
Bibliografia
  • 1. Abdur Rani, M. F. and Rusli, N. (2017). The Accuracy Assessment of Agisoft Photoscan and Pix4D Mapper Softwarein Orthophoto Production. In Geomatics Research Innovation Competition (GRIC), volume 1, pages 1–4.
  • 2. Ajayi, O. G. and Palmer, M. (2020). Modelling 3D Topography by comparing airborne LiDAR data with Unmanned Aerial System (UAS) photogrammetry under multiple imaging conditions. Geoplanning: Journal of Geomatics and Planning, 6(2):123–138, doi:10.14710/geoplanning.6.2.122-138.
  • 3. Ajayi, O. G., Palmer, M., and Salubi, A. A. (2018). Modelling farmland topography for suitable site selection of dam construction using unmanned aerial vehicle (UAV) photogrammetry. Remote Sensing Applications: Society and Environment, 11:220–230, doi:10.1016/j.rsase.2018.07.007.
  • 4. Ajeeth, C. (2015). Aerial 3D imaging and Monitoring of quarries with small drones. An article presented at United Arab Emirate Ministry of Environment and water. Retrieved form https://fnrc.gov.ae/forum/present/2015/45.pdf.
  • 5. Akgul, M., Yurtseven, H., Gulci, S., and Akay, A. E. (2018). Evaluation of UAV-and GNSS-based DEMs for earthwork volume. Arabian Journal for Science and Engineering, 43(4):1893–1909, doi:10.1007/s13369-017-2811-9.
  • 6 Alidoost, F. and Arefi, H. (2017). Comparison of UAS-based photogrammetry software for 3D point cloud generation: asurvey over a historical site. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, IV-4/W4:55–61, doi:10.5194/isprs-annals-IV-4-W4-55-2017.
  • 7. Argese, F., Erriquez, G., Galeandro, A., Giraldo, M. S., Imperiale, M. G., Scarano, M., Specchiarello, A. R., Tarantino, E., and Turso, A. (2019). A procedure for automating earthwork computations using UAV photogrammetry and open-source software. AIP Conference Proceedings, 2116(1):280008, doi:10.1063/1.5114291.
  • 8. Bahuguna, P., Dheeraj, K., and K., S. (2006). Modern survey instruments and their use in mine surveying. In Proceedings of the Indian Conference on Mine Surveying (ICMS-2006), September 8–9, 2006, Indian School of Mines (ISM), Shanbad, Jharkhand, India, pages 95–112.
  • 9. Bater, C. W. and Coops, N. C. (2009). Evaluating error associated with lidar-derived DEM interpolation. Computers&Geosciences, 35(2):289–300.
  • 10. Dastgheibifard, S. and Asnafi, M. (2018). A review on potential applications of unmanned aerial vehicle for construction industry. Sustainable Structure and Materials, 1(2):44-53, doi:10.26392/SSM.2018.01.02.044.
  • 11. DJI (n.d.). DJI Phantom 4-Specs, FAQ, Tutorials and downloads. Retrieved from https://www.dji.com/mobile/phantom-4/info.
  • 12. Gupta, S. G., Ghonge, D., Jawandhiya, P. M., et al. (2013). Review of unmanned aircraft system (UAS). International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) Volume, 2(4):1646–1658.
  • 13. Harwin, S. and Lucieer, A. (2012). Assessing the accuracy of georeferenced point clouds produced via multiview stereopsis from unmanned aerial vehicle (UAV) imagery. RemoteSensing, 4(6):1573–1599, doi:10.3390/rs4061573.
  • 14. Hirayama, N., Kawata, Y., Suzuki, S., and Harada, K. (2009). Estimation procedure for potential quantity of tsunami debris on tsunami earthquake disasters.
  • 15. Kuta, A. A., Ajayi, O. G., Osunde, T. J., Ibrahim, P. O., Dada, D. O., and Awwal, A. A. (2018). Investigation of the robustness of different contour interpolation models for the generation of contour map and digital elevation models. pages1527–1541.
  • 16. Martin, K. (2016). Assessing the Accuracy of Stockpile Volumes Obtained Through Aerial Surveying – Case Study. Retrieved from https://connexicore.com/wp-content/uploads/2018/08/stock_pile_volumes_case_study.pdf.
  • 17. Mohammed, A. I. and Abdulrahman, F. H. (2020). Evaluation of UAV-based DEM for volume calculation. Journal of Duhok University, 23(1):11–24, doi:10.26682/sjuod.2020.23.1.2.
  • 18. Napoles, E. and Berber, M. (2018). Precise formula for volume computations using contours method. Boletim de Ciências Geodésicas, 24(1):18–27, doi:10.1590/S1982-21702018000100002.
  • 19. Nguyen, Q. L., Bui, X.-N., Cao, X. C., and Le, V. C. (2019). An approach of mapping quarries in Vietnam using low cost Unmanned Aerial Vehicles. Inżynieria Mineralna (Journal of the Polish Mineral Engineering Society), 21:248–262, doi:10.29227/IM-2019-02-79.
  • 20. Pix4D Support (2020). How to improve the outputs of dense vegetation areas? Retrieved from https://support.pix4d.com/hc/en-us/articles/202560159-How-to-improve-the-outputs-of-dense-vegetation-areas.
  • 21. Propeller (2018). How stockpile volume measurement works in drone surveying with propeller. Retrieved from https://www.propelleraero.com/blog/how-stockpile-volume- measurement-works-in-drone-surveying/.
  • 22. Raeva, P., Filipova, S., and Filipov, D. (2016). Volume computation of a stockpile – a study case comparing gps and uav measurements in an open pit quarry. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI(B1):12–19, doi:10.5194/isprsarchives-XLI-B1-999-2016. XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic.
  • 23. Rahman, A. A. A., Maulud, K. N. A., Mohd, F. A., Jaafar, O., and Tahar, K. N. (2017). Volumetric calculation using low cost unmanned aerial vehicle (UAV) approach. IOP Conference Series: Materials Science and Engineering, 270:012032,doi:10.1088/1757-899x/270/1/012032.
  • 24. Suziedelyte Visockiene, J., Brucas, D., and Ragauskas, U. (2014). Comparison of UAV images processing softwares. Journal ofMeasurements in Engineering, 2(2):111–121
  • 25. Tan, Q. and Xu, X. (2014). Comparative analysis of spatial interpolation methods: an experimental study. Sensors & Transducers, 165(2):155–163.
  • 26. Yoo, H. T., Lee, H., Chi, S., Hwang, B.-G., and Kim, J. (2017). A Preliminary Study on Disaster Waste Detection and Volume Estimation Based on 3D Spatial Information, pages 428–435. doi:10.1061/9780784480823.051.
  • 27. Zylka, A. (2014). Small Unmanned Aerial Systems (sUAS) for Volume Estimation. UVM Honors College Senior Theses. Paper 44.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce58495c-b788-4a80-822f-42d7b337da4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.