Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We study the multifractal dimension functions of the Moran measure associated with a homogeneous (non-regular) Moran fractal and show that the multifractal measures are mutually singular when the multifractal Hausdorff and packing functions differ. As an application, we give concrete examples related to these concepts.
Wydawca
Rocznik
Tom
Strony
21--35
Opis fizyczny
Bibliogr. 21 poz., wykr.
Twórcy
autor
- Analysis, Probability & Fractals Laboratory LR18ES17, Department of Mathematics, Faculty of Sciences of Monastir, 5000 Monastir, Tunisia
Bibliografia
- [1] N. Attia and B. Selmi, Regularities of multifractal Hewitt-Stromberg measures, Comm. Korean Math. Soc. 34 (2019), 213-230.
- [2] N. Attia and B. Selmi, A multifractal formalism for Hewitt-Stromberg measures, J. Geom. Anal. 31 (2021), 825-862.
- [3] N. Attia and B. Selmi, On the mutual singularity of Hewitt-Stromberg measures, Analysis Math. 47 (2021), 273-283.
- [4] F. Ben Nasr, I. Bhouri and Y. Heurteaux, The validity of the multifractal formalism: results and examples, Adv. Math. 165 (2002), 264-284.
- [5] F. Ben Nasr and J. Peyrière, Revisiting the multifractal analysis of measures, Rev. Mat. Iberoamer. 29 (2013), 315-328.
- [6] M. Das, Hausdorff measures, dimensions and mutual singularity, Trans. Amer. Math. Soc. 357 (2005), 4249-4268.
- [7] Z. Douzi and B. Selmi, On the mutual singularity of multifractal measures, Electron. Res. Arch. 28 (2020), 423-432.
- [8] Z. Douzi and B. Selmi, The mutual singularity of the relative multifractal measures, Nonautonom. Dynam. Systems 8 (2021), 18-26.
- [9] Z. Douzi and B. Selmi, On the mutual singularity of Hewitt-Stromberg measures for which the multifractal functions do not necessarily coincide, Ricerche Mat. (online, 2021).
- [10] Z. Douzi, A. Samti and B. Selmi, Another example of the mutual singularity of multifractal measures, Proyecciones 40 (2021), 17-33.
- [11] L. Huang, Q. Liu and G. Wang, Multifractal analysis of Bernoulli measures on a class of homogeneous Cantor sets, J. Math. Anal. Appl. 491 (2020), art. 124362, 15 pp.
- [12] L. Olsen, A multifractal formalism, Adv. Math. 116 (1995), 82-196.
- [13] B. Selmi, Remarks on the mutual singularity of multifractal measures, Proyecciones 40 (2021), 71-82.
- [14] B. Selmi, Some new characterizations of Olsen’s multifractal functions, Results Math. 75 (2020), art. 147, 16 pp.
- [15] B. Selmi, The relative multifractal analysis, review and examples, Acta Sci. Math. 86 (2020), 635-666.
- [16] S. Shen, Multifractal analysis of some inhomogeneous multinomial measures with distinct analytic Olsen’s b and B functions, J. Statist. Phys. 159 (2015), 1216-1235.
- [17] M. Wu, The multifractal spectrum of some Moran measures, Sci. China Ser. A Math. 48 (2005), 97-112.
- [18] M. Wu, The singularity spectrum f(α) of some Moran fractals, Monatsh. Math. 144 (2005), 141-55.
- [19] M. Wu and J. Xiao, The singularity spectrum of some non-regularity Moran fractals, Chaos Solitons Fractals 44 (2011), 548-557.
- [20] J. Xiao and M. Wu, The multifractal dimension functions of homogeneous Moran measure, Fractals 16 (2008), 175-185.
- [21] Z. Yuan, Multifractal spectra of Moran measures without local dimension, Nonlinearity 32 (2019), 5060-5086.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce52b91a-5e23-470f-b86e-8fb69f45ca5d