PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Modeling and Optimization of Phenol Formaldehyde Resin Sand Mould System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Chemical bonded resin sand mould system has high dimensional accuracy, surface finish and sand mould properties compared to green sand mould system. The mould cavity prepared under chemical bonded sand mould system must produce sufficient permeability and hardness to withstand sand drop while pouring molten metal through ladle. The demand for improved values of permeability and mould hardness depends on systematic study and analysis of influencing variables namely grain fineness number, setting time, percent of resin and hardener. Try-error experiment methods and analysis were considered impractical in actual foundry practice due to the associated cost. Experimental matrices of central composite design allow conducting minimum experiments that provide complete insight of the process. Statistical significance of influencing variables and their interaction were determined to control the process. Analysis of variance (ANOVA) test was conducted to validate the model statistically. Mathematical equation was derived separately for mould hardness and permeability, which are expressed as a non-linear function of input variables based on the collected experimental input-output data. The developed model prediction accuracy for practical usefulness was tested with 10 random experimental conditions. The decision variables for higher mould hardness and permeability were determined using desirability function approach. The prediction results were found to be consistent with experimental values.
Rocznik
Strony
162--170
Opis fizyczny
Bibliogr. 21 poz., il., rys., tab.
Twórcy
autor
  • Dept. of Industrial and Production Engineering, KLS Gogte Institute of Technology, Belagavi-59008, India
  • Dept. of Mechanical Engineering, Sahyadri College of Engineering and Management, Mangalore-575007, India
  • Dept. of Mechanical engineering, Sanjeevan Engineering and Technology Institute, Panhal, Kolhapur-416201, India
  • Dept. of Industrial and Production Engineering, KLS Gogte Institute of Technology, Belagavi-59008, India
Bibliografia
  • [1] Khandelwal, H. & Ravi, B. (2015). Effect of binder composition on the shrinkage of chemically bonded sand cores. Materials and Manufacturing Processes. 30(12), 1465-1470.
  • [2] Saikaew, C. & Wiengwiset, S. (2012). Optimization of moulding sand composition for quality improvement of iron castings. Applied Clay Science. 67, 26-31.
  • [3] Parappagoudar, M.B., Pratihar, D.K. & Datta, G.L. (2013). Linear and non-linear statistical modelling of green sand mould system. International Journal of Cast Metals Research. 20(1), 1-13.
  • [4] Barlow, T.E. (1966). Precision green sand moulding, AFS Transactions. 74, 70-81.
  • [5] Frost, J. & Hillier, M.J. (1967). The mechanics of green sand moulding, AFS Transactions. 75, 126-132.
  • [6] Briggs, C.W. (1966). Synthetic bonded steel moulding sands – sand, clay and water systems. AFS Transactions. 74, 553-572.
  • [7] Dietert, H.W., Fairfield, H.H. & Hasty, E.J. (1947). Density of Moulding Sand. AFS Transactions. 55, 175-190.
  • [8] Roy, T. (2013). Analysis of casting defects in foundry by computerised simulations (CAE) - A new approach along with some industrial case studies, Transactions of 61stIndian Foundry Congress 2013, 1-9.
  • [9] Ajibola, O.O., Oloruntoba, D.T. & Adewuyi B.O. (2015). Effects of moulding sand permeability and pouring temperatures on properties of cast 6061 aluminium alloy, International Journal of Metals. Article ID: 632021, 13, http://dx.doi.org/10.1155/2015/632021.
  • [10] Reddy. N. S., Yong-Hyun B., Seong-Gyeong, K. & Young, H.B. (2014). Estimation of permeability of green sand mould by performing sensitivity analysis on neural networks model. Journal of Korea Foundry Society. 34(3), 23-27.
  • [11] Khandelwal, H. & Ravi, B. (2016). Effect of moulding parameters on chemically bonded sand mould properties, Journal of Manufacturing Process. 22, 127-133.
  • [12] Lowe, K. E., and Showman, R. E. (2011). Dimensional changes in chemically bonded moulds and cores. AFS Transactions 2011. 007, 251-260.
  • [13] Rose, D.C., Vingas, G.J. & Taylor, L.E. (1964). Properties of Base Sands – Bentonite Bonding, AFS Transactions. 72, 36-47.
  • [14] Surekha, B., Hanumantha R.D., Krishna, G., Rao, M., Vundavilli, P.R. & Parappagoudar, M.B. (2012). Modeling and analysis of resin bonded sand mould system using design of experiments and central composite design, Journal for Manufacturing Science and Production. 12, 31-50.
  • [15] Dabade, U.A. & Bhedasgaonkar R.C. (2013). Casting defect analysis using design of experiments (DOE) and computer aided casting simulation technique, Procedia CIRP. 7, 616-621.
  • [16] Parappagoudar, M.B., Pratihar D.K. & Datta. G.L. (2007). Linear and non-linear statistical modelling of green sand mould system, International Journal of Cast Metals Research. 20(1), 1-13.
  • [17] Parappagoudar, M.B., Pratihar D.K. & Datta, G.L. (2008). Linear and non-linear modeling of cement-bonded moulding sand system using conventional statistical regression analysis, Journal of Materials Engineering Performance. 17(4), 472-481.
  • [18] Danko, R., Gorny, M., Holtzer, M. & Zymankowska-Kumon, S. (2014). Effect of the quality of furan moulding sand on the skin layer of ductile iron castings, ISIJ International. 54(6), 1288-1293.
  • [19] Kumar, A. & Singh, J. (2011). Optimization of sand castng process parameters for ferrous material by using design of experiments, International Journal on Emerging Technologies. 2(2), 122-127.
  • [20] Saikaew, C. & Wiengwiset, S. (2012). Optimization of moulding sand composition for quality improvement of iron castings, Applied Clay Science. 67-68, 26-31.
  • [21] Kittur, J.K.. Choudhari, M.N. & Parappagoudar, M.B. (2015). Modeling and multi-response optimization of pressure die casting process using response surface methodology, International Journal of Advanced Manufacturing Technology. 77(1), 211-224.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce4e36d4-b94a-4e23-af60-02d2303c4aff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.