Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Symulacja losowej odpowiedzi rurociągu na prądy błądzące generowane przez trakcję elektryczną prądu stałego
Języki publikacji
Abstrakty
The paper presents a method of the simulation of the pipeline potential shift produced by D.C. traction stray currents which are stochastic in character. The calculation model presented is based on the deterministic model used in the earth-return circuit theory combined with the non-deterministic approach based on the Monte Carlo procedure. The model of the equivalent rail with current energization and the concept of superposition allow one to consider more complicated D.C. railway systems using a segmental approximation of the complex railway route and taking into account a number of substations and loads at any location. A locomotive position and a load current are assumed to be independent random variables in the non-deterministic approach. Using simulation program developed random characteristics of a pipeline response e.g. maximum, minimum, median and mean values can be obtained. Hence the pipeline regions more exposed to corrosion risk can be determined.
W artykule przedstawiono metodę symulacji potencjału rurociągu generowanego przez prądy błądzące o losowym kierunku przepływu i wartości. Przedstawiony model zrealizowano w oparciu o metodę deterministyczną w połączeniu z procedurą Monte Carlo. Model zastępczy szyn wykorzystuje zasilanie prądowe oraz zasadę superpozycji. Pozwala to rozważać złożone układy z zastosowaniem segmentowej aproksymacji trasy kolejowej i uwzględnieniu wielu podstacji i pojazdów w dowolnej lokalizacji. Zakłada się, że pozycja lokomotywy i prąd obciążenia są niezależnymi zmiennymi losowymi w podejściu niedeterministycznym. Wykorzystując zaprezentowaną metodę przedstawiono charakterystyki odpowiedzi rurociągu, tj. minimalne, maksymalne, medianę i wartości średnie potencjału. Na tej podstawie można wyznaczyć rejony rurociągów zagrożone korozją elektrochemiczną.
Czasopismo
Rocznik
Strony
157--170
Opis fizyczny
Bibliogr. 16 poz., rys., wz., wykr., tab.
Twórcy
autor
- Instytut Elektrotechniki i Elektroniki Przemysłowej, Wydział Elektryczny, Politechnika Poznańska
autor
- Instytut Elektrotechniki i Elektroniki Przemysłowej, Wydział Elektryczny, Politechnika Poznańska
Bibliografia
- [1] Bortels L., Dorochenko A., Van den Bossche B., Weyns G., Deconinck J., Three-Dimensional Boundary Element Method and Finite Element Method Simulations Applied to Stray Current Interference Problems, A Unique Coupling Mechanism That Takes the Best of Both Methods, Corrosion, Vol. 63, No. 6, June 2007, 561–576.
- [2] Brichau F., Deconinck J., A Numerical Model for Cathodic Protection of Buried Pipes. Corrosion, Vol. 50, No. 1, January 1994, 39–49.
- [3] Charalambous C.A., Cotton I., Aylott P., A Simulation Tool to Predict the Impact of Soil Topologies on Coupling Between a Light Rail System and Buried Third-Party Infrastructure, IEEE Trans. Veh. Technol., Vol. 57, No. 3, 2008, 1404–1416.
- [4] Czarnywojtek P., Machczyński W., Computer simulation of responses of earth-return circuits to the a.c. and DC external excitation, European Trans. on Electrical Power, ETEP Vol. 13, No. 3, May/June 2003, 173–184.
- [5] Hill R.J., Brillante S., Leonard P.J., Railway track transmission line parameters from finite element field modeling: Shunt admittance, Proc. IEE Elect. Power Applicat., Vol. 146, No. 6, 1999, 647–660.
- [6] Hill R.J., Brillante S., Leonard P.J., Railway track transmission line parameters from finite element field modeling: Series impedance, Proc. IEE Elect. Power Applicat., Vol. 147, No. 3, 2000, 227–238.
- [7] Lucca G., Estimating stray currents interference from DC traction lines on buried pipelines by means a Monte Carlo algorithm, Electrical Engineering, DOI 10.1007/s00202-015-0333-6, published online: 05 April 2015.
- [8] Machczyński W., Budnik K., Szymenderski J., Assessment of D.C traction stray currents effects on nearby pipelines, The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35, iss 4, 2016, 1468–1477.
- [9] Machczyński W., Czarnywojtek P., Computer simulation of a protection of underground conductors against stray currents, 16th International Corrosion Congress, September 19 – 24, 2005, Beijing, China, paper 21-03, 1–8.
- [10] Machczyński W., Simulation model for drainage protection of earth–return circuits laid in stray currents area, Electrical Engineering, Vol. 84, No 3, July 2002, 165–172.
- [11] Machczyński, W., Currents and potentials in earth return circuits exposed to alternating current electric railways, Proc. IEE, Part B, Vol. 129, 5, 1982, 279–288.
- [12] Mariscotti A., Pozzobon P., Determination of the electrical parameters of railway traction lines: Calculation, measurements and reference data, IEEE Trans. on Power Delivery, Vol. 19, No. 4, 2004, 1538–1546.
- [13] Metwally I.A., Al-Mandhari H.M.,Nadir Z., Gastli A., Boundary element simulation of DC stray currents in oil industry due to cathodic protection interference, European Trans. on Electrical Power, Vol. 17, Sept./Oct. 2007, 486–499.
- [14] Ogunsola A., Mariscotti A., Electromagnetic Compatibility in Railways, Analysis and management, Springer – Verlag, Berlin Heidelberg 2013.
- [15] Ogunsola A., Mariscotti A., Sandrolini L., Estimation of stray current from a dc-electrified railway and impressed potential on a buried pipe, IEEE Trans. on Power Delivery, Vol. 27, No. 4, 2012, 2238–2246.
- [16] Sunde E.D., Earth conduction effects in transmission system, New York, Dover 1968.
Uwagi
EN
Section "Electrical Engineering"
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce468f76-8526-49a8-a496-07bc04e8009e