Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a method of optical fluorescence analysis for the evaluation of homogeneity of multicomponent grain mixtures. This method is based on the evaluation of the content of fluorescent marker. Maize with two degrees of fineness d1 = 1.25 mm and d2 = 2.00 mm was used as a tracer. Maize was covered with Rhodamine B, which emits red light under the influence of ultraviolet radiation. The tracer was introduced into the mixture before the mixing process began. Nine multicomponent grain mixtures were used. The proportion of fluorescent maize was evaluated on the basis of computer image analysis. Additionally, the fraction of the tracer was evaluated using a control method (validation of the accuracy of the proposed method). The results indicate that the degree of the tracer’s fineness influences the results obtained. The use of fluorescent maize with particle size d2 = 2.00 mm allowed to obtain results which differed less from the control method. The average size of the difference in results ranged from 0.20-0.38 for the 2.00 mm tracer and 0.38-1.34 for the 1.25 mm tracer.
Czasopismo
Rocznik
Tom
Strony
41--54
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
- Opole University of Technology, Faculty of Production Engineering and Logistics, Department of Biosystems Engineering and Chemical Processes, Mikolajczyka 5, 45-271 Opole, Poland
autor
- Opole University of Technology, Faculty of Mechanical Engineering, Department of Manufacturing and Materials Engineering, Mikolajczyka 5, 45-271 Opole, Poland
Bibliografia
- [1] Matuszek, D. B., & Królczyk, J. B. (2017). Aspects of safety in production of feeds - a review. Animal Nutrition and Feed Technology, 17(2), 367-385. http://doi.org/10.5958/0974-181X.2017.00036.1
- [2] Cullen, P. J. (Ed.). (2009). Food Mixing: Principles and Applications. John Wiley & Sons.
- [3] Wójcik, A., Klapa, P., Mitka B., & Sładek, J. (2018). The use of the photogrammetric method for measurement of the repose angle of granular materials. Measurement, 115, 19-26. http://doi.org/10.1016/j.measurement.2017.10.005
- [4] Asachi, M., Nourafkan, E., & Hassanpour, A. (2018). A review of current techniques for the evaluation of powder mixing. Advanced Powder Technology, 29(7), 1525-1549. https://doi.org/10.1016/j.apt.2018.03.031
- [5] Królczyk, J. B. (2014). An attempt to predict quality changes in a ten-component granular system. Tehnički vjesnik - Technical Gazette, 21(2), 255-261. https://hrcak.srce.hr/120375
- [6] Hogg, R. (2009). Mixing and segregation in powders: evaluation, mechanisms and processes. KONA Powder and Particle Journal, 27, 3-17. https://doi.org/10.14356/kona.2009005
- [7] Brittain, H. G. (2002). Particle size distribution II: The problem of sampling powdered solids. Pharmaceutical Technology, 26(7), 67-73.
- [8] Susana, L., Canu, P., & Santomaso, A. C. (2011). Development and characterization of a new thief sampling device for cohesive powders. International Journal of Pharmaceutics, 416(1), 260-267. https://doi.org/10.1016/j.ijpharm.2011.07.003
- [9] Matuszek, D. (2015). Modelling selected parameters of granular elements in the mixing process. International Agrophysics, 29, 75-81. https://doi.org/10.1515/intag-2015-0002
- [10] Królczyk, J. B. (2016). Analysis of kinetics of multicomponent, heterogeneous granular mixtures - laminar and turbulent flow approach. Chemical and Process Engineering, 37(2), 161-173. https://doi.org/10.1515/cpe-2016-0015
- [11] Yamamoto, Y., Suzuki, T., Matsumoto, M., Ohtani, M., Hayano, S., Fukami, T., & Tomono, K. (2012). Evaluation of the degree of mixing of combinations of dry syrup, powder, and fine granule products in consideration of particle size distribution using near infrared spectrometry. Chemical and Pharmaceutical Bulletin, 60(5), 624-31. https://doi.org/10.1248/cpb.60.624
- [12] Lai, C. K., Holt, D., Leung, J. C., & Cooney, C. L. (2001). Real time and noninvasive monitoring of dry powder blend homogeneity. AIChE Journal, 47(11), 2618-2622. https://doi.org/10.1002/aic.690471124
- [13] Allan, P., Bellamy, L. J., Nordon, A., & Littlejohn, D. (2010). Non-invasive monitoring of the mixing of pharmaceutical powders by broadband acoustic emission. Analyst, 135(3), 518-24. https://doi.org/10.1039/b922446g
- [14] Ammarcha, C., Gatumel, C., Dirion, J. L., Cabassud, M., & Berthiaux, H. (2017). Continuous powder mixing of segregating mixtures under steady and unsteady state regimes: Homogeneity assessment by real-time on-line image analysis. Powder Technology, 315, 39-52. https://doi.org/10.1016/j.powtec.2017.02.010
- [15] Wójcik, A., Kościelniak, P., Mazur, M., & Mathia, T. G. (2019). Morphological discrimination of granular materials by measurement of pixel intensity distribution (PID). Metrology and Measurement Systems, 26(2), 297-308. https://doi.org/10.24425/mms.2019.128357
- [16] Nečemer, M., Kump, P., Rajčevič, M., Jačimović, R., Budič, B., & Ponikvar, M. (2003). Determination of sulfur and chlorine in fodder by X-ray fluorescence spectral analysis and comparison with other analytical methods. Spectrochimica Acta Part B: Atomic Spectroscopy, 58(7), 1367-1373. https://doi.org/10.1016/S0584-8547(03)00057-0
- [17] Przeniosło-Siwczyńska, M., & Kwiatek, K. (2010). Determination of active substances in medicated feedstuffs. Krmiva: Časopis o hranidbi životinja, proizvodnji i tehnologiji krme, 52(3), 165-169. https://hrcak.srce.hr/60614
- [18] Eisenberg, D. (1998). The use of Microtracers®F (colored uniformly sized iron particles) in coding the presence of coccidiostats in poultry feeds: Practical Implications. Zootecnica International, 12, 46-50.
- [19] Matuszek, D. (2013). The analysis of homogeneity of industrial fodder for cattle. Journal of Research and Applications in Agricultural Engineering, 58(1), 118-121 (in Polish). https://www.pimr.eu/wp-content/uploads/2019/05/2013_1_24MD.pdf
- [20] Daumann, B., & Nirschl, H. (2008). Assessment of the mixing efficiency of solid mixtures by means of image analysis. Powder Technology, 182, 415-423. https://doi.org/10.1016/j.powtec.2007.07.006
- [21] Marciniak, T., Stankiewicz, A., Dąbrowski, A., Stopa, M., Rakowicz, P., & Marciniak, E. (2019). Measurement of retina vessels by segmentation of images reconstructed from optical coherence tomography data. Metrology and Measurement Systems, 26(3), 449-461. https://doi.org/10.24425/mms.2019.129581
- [22] Isaza, C., Mosquera, J. M., Gómez-Méndez, G. A., Paz, Z. D., Jonny, P., Karina-Anaya, E., & Palillero-Sandoval, O. (2019). Development of an acousto-optic system for hyperspectral image segmentation. Metrology and Measurement Systems, 26(3), 517-530. https://doi.org/10.24425/mms.2019.129576
- [23] Tukiendorf, M., Krótkiewicz, M., & Boss, J. (2003). The application of image analysis as a method of evaluation of granular blend’s quality. Polish Journal of Food and Nutrition Sciences, 53(2), 27-30.
- [24] Rosas, J. G., & Blanco, M. (2012). A criterion for assessing homogeneity distribution in hyperspectral images. Part 1: Homogeneity index bases and blending processes. Journal of Pharmaceutical and Biomedical Analysis, 70, 680-690. https://doi.org/10.1016/j.jpba.2012.06.036
- [25] Cho, J., Zhu, Y., Lewkowicz, K., Lee, S. H., Bergman, T., & Chaudhuri, B. (2012). Solving granular segregation problems using a biaxial rotary mixer. Chemical Engineering and Processing: Process Intensification, 57-58, 42-50. https://doi.org/10.1016/j.cep.2012.04.002
- [26] Olaofe, O. O., Buist, K. A., Deen, N. G., Van der Hoef, M. A., & Kuipers, J. A. M. (2013). Improved digital image analysis technique for the evaluation of segregation in pseudo-2D beds. Powder Technology, 244, 61-74. https://doi.org/10.1016/j.powtec.2013.03.051
- [27] Nadeem, H., & Heindel, T. J. (2018). Review of noninvasive methods to characterize granular mixing. Powder Technology, 332, 331-350. https://doi.org/10.1016/j.powtec.2018.03.035
- [28] Yang, B., Wang Y., & Liu J. (2011). PIV measurements of two-phase velocity fields in aeolian sediment transport using fluorescent tracer particles. Measurement, 44(4), 708-716. https://doi.org/10.1016/j.measurement.2011.01.007
- [29] Karumanchi, V., Taylor, M. K., Ely, K. J., & Stagner, W. C. (2011). Monitoring powder blend homogeneity using light-induced fluorescence. AAPS PharmSciTech, 12(4), 1031-1037. https://doi.org/10.1208/s12249-011-9667-1
- [30] Mendez, A. S. L., Carli, G., & Garcia, C. V. (2010). Evaluation of powder mixing operation during batch production: Application to operational qualification procedure in the pharmaceutical industry. Powder Technology, 198(2), 31-313. https://doi.org/10.1016/j.powtec.2009.11.027
- [31] Ma, H., & Anderson, C. A. (2008). Characterization of Pharmaceutical Powder Blends by NIR Chemical Imaging. Journal of Pharmaceutical Sciences, 97(8), 3305-3320. https://doi.org/https://doi.org/10.1002/jps.21230
- [32] Asachi, M., Nourafkan, E., & Hassanpour, A. (2018). A review of current techniques for the evaluation of powder mixing. Advanced Powder Technology, 29(7), 1525-1549. https://doi.org/10.1016/j.apt.2018.03.031
- [33] Matuszek, D., & Tukiendorf, M. (2007). Influence of seeds dimensions on the process of mixing in the flow agitator with applying additional elements. Agricultural Engineering, 8(96), 171-177, (in Polish).
- [34] Matuszek, D., & Biłos, Ł. (2017). Use of fluorescent tracers for the assessment of the homogeneity of multicomponent granular feed mixtures. Przemysł Chemiczny, 96(11), 2356-2359. https://doi.org/10.15199/62.2017.11.27
- [35] Joint Committee for Guides in Metrology. (2008). Guide to the Expression of Uncertainty in Measurement (JCGM 100:2008). https://www.bipm.org/en/publications/guides/gum.html
- [36] Wójcik, A., Niemczewska-Wójcik, M., & Sładek, J. (2017). Assessment of free-form surfaces’reconstruction accuracy. Metrology and Measurement Systems, 24(2), 303-312. https://doi.org/10.1515/mms-2017-0035
- [37] Niemczewska-Wójcik, M., Sładek, J., Tabaka, T., & Wójcik, A. (2014). Product quality assessment - measurement and analysis of surface topography. Metrology and Measurement Systems, 21(2), 271-280. https://doi.org/10.2478/mms-2014-0023
- [38] Merola, M., Ruggiero, A., De Mattia, J. S., & Affatato, S. (2016). On the tribological behavior of retrieved hip femoral heads affected by metallic debris. A comparative investigation by stylus and optical profilometer for a new roughness measurement protocol. Measurement, 90, 365-371. https://doi.org/10.1016/j.measurement.2016.05.003
- [39] Matuszek, D., & Wojtkiewicz, K. (2017). Application of fluorescent markers for homogeneity assessment of grain mixtures based on maize content. Chemical and Process Engineering, 38(4), 505-512. https://doi:10.1515/cpe-2017-0039
- [40] Matuszek, D. (2017). The use of the fluorescence phenomenon to evaluate the content of feed ingredients. Journal of Research and Applications in Agricultural Engineering, 62(2), 72-75. https://www.pimr.eu/wp-content/uploads/2019/05/2017_2_MD.pdf
- [41] Matuszek, D. B. (2020). Ultraviolet fluorescence in the assessment of quality in the mixing of granular material. Sustainability, 12(4), 1546. https://doi.org/10.3390/su12041546
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce4444ec-b882-41f3-87aa-50b95554818d