PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of laminar and turbulent natural, mixed and forced convection in cavities by heatlines

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Laminar and turbulent convective heat transfer in a ventilated and non-ventilated cavity was analyzed by heatlines. Heatlines show that in non-ventilated cavities it is possible to estimate the energy path using the streamlines for turbulent flow regime. In ventilated cavities, heatlines allow to observe that thermal energy travels along the top, by the bottom or by both paths due to the inertial force, the buoyant force or a combination of both, respectively. In the laminar regime, these situations are well established for the Rayleigh number (Ra). Nevertheless, in the turbulent regime, it was found that the combined effect of the inertial and buoyant forces on the energy path is disrupted when Ra > 109. Furthermore, heatlines in conjunction with temperature and velocity profiles allow to see that natural convection is preferred when cooling is required, while the forced convection is a better choice if heating is needed.
Słowa kluczowe
Rocznik
Strony
27--53
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
  • Centro Nacional de Investigación y Desarrollo Tecnológico CENIDET-TecNM-SEP Prol. Av. Palmira S/N. Col. Palmira. Cuernavaca, Morelos, CP. 62490, México
  • Instituto Tecnológico de Zacatepec. ITZ-TecNM-SEP Calzada Tecnológico No. 27, Zacatepec de Hidalgo, Morelos, CP 62780, México
autor
  • Centro Nacional de Investigación y Desarrollo Tecnológico CENIDET-TecNM-SEP Prol. Av. Palmira S/N. Col. Palmira. Cuernavaca, Morelos, CP. 62490, México
autor
  • Centro Nacional de Investigación y Desarrollo Tecnológico CENIDET-TecNM-SEP Prol. Av. Palmira S/N. Col. Palmira. Cuernavaca, Morelos, CP. 62490, México
autor
  • Centro Nacional de Investigación y Desarrollo Tecnológico CENIDET-TecNM-SEP Prol. Av. Palmira S/N. Col. Palmira. Cuernavaca, Morelos, CP. 62490, México
autor
  • Centro Nacional de Investigación y Desarrollo Tecnológico CENIDET-TecNM-SEP Prol. Av. Palmira S/N. Col. Palmira. Cuernavaca, Morelos, CP. 62490, México
Bibliografia
  • 1. S. Kimura, A. Bejan, The heatline visualization of convective heat transfer, ASME Journal of Heat Transfer, 105, 916–919, 1983.
  • 2. S.K. Aggarwal, A. Manhapra, Use of heatlines for unsteady buoyancy-driven flow in a cylindrical enclosure, ASME Journal of Heat Transfer, 111, 576–578, 1989.
  • 3. F.Y. Zhao, D. Liu, G.F. Tang, Application issues of the streamline, heatline and massline for conjugated heat and mass transfer, International Journal of Heat and Mass Transfer, 50, 320–334, 2007.
  • 4. P. Biswal, T. Basak, Sensitivity of heatfunction boundary conditions on invariance of Bejan’s heatlines for natural convection in enclosures with various wall heatings, International Journal of Heat and Mass Transfer, 89, 1342–1368, 2015.
  • 5. F.L. Bello-Ochende, A heat function formulation for thermal convection in a square cavity, International Communications in Heat and Mass Transfer, 15, 193–202, 1988.
  • 6. W.A. Waheed, Temperature dependent fluid properties effects on the heat function formulation of natural convective flow and heat transfer, International Journal of Numerical Methods in Heat and Fluid Flow, 16, 240–260, 2006.
  • 7. Q.H. Deng, Fluid flow and heat transfer characteristics of natural convection in square cavities due to discrete source-sink pairs, International Journal of Heat and Mass Transfer, 51, 5949–5957, 2008.
  • 8. M. Mobedi, U. Özkol, B. Suden, Visualization of diffusion and convection heat transport in a square cavity with natural convection, International Journal of Heat and Mass Transfer, 53, 99–109, 2010.
  • 9. Q.H. Deng, G.F. Tang, Numerical visualization of mass and heat transport for mixed convective heat transfer by streamline and heatline, International Journal of Heat and Mass Transfer, 45, 2387–2396, 2002.
  • 10. D. Ramakrishna, T. Basak, S. Roy, I. Pop, A complete heatline analysis on mixed convection within a square cavity: effects of the thermal boundary conditions via thermal aspect ratio, International Journal of Thermal Sciences, 57, 98–111, 2012.
  • 11. T.Y. Kim, S.W. Baek, Analysis of combined conductive and radiative heat transfer in a two-dimensional rectangular enclosure using the discrete ordinates method, International Journal of Heat and Mass Transfer, 34, 2265–2273, 1991.
  • 12. Q.H. Deng, G.F. Tang, Numerical visualization of mass and heat transport for conjugate natural convection/heat conduction by streamline and heatline, International Journal of Heat and Mass Transfer, 45, 2373–2385, 2002.
  • 13. M. Mobedi, Conjugate natural convection in a square cavity with finite thickness horizontal wall, International Communications in Heat and Mass Transfer, 35, 503–513, 2008.
  • 14. S.K. Dash, Heatline visualization in turbulent flow, International Journal of Numerical Methods in Fluid Flow, 5, 37–46, 1996.
  • 15. G. Delibra, K. Hanjalic, D. Borello, F. Rispoli, Vortex structures and heat transfer in a wall-bounded pin matrix: LES with a RANS wall-treatment, International Journal of Heat and Fluid Flow, 31, 740–753, 2010.
  • 16. R. Henkes, F. Van-Der-Vlugt, C. Hoogendoorn, Natural-convection flow in a square cavity calculated with low-Reynolds-number turbulence models, International Journal of Heat and Mass Transfer, 34, 377–388, 1991.
  • 17. I. Hernández-López, Líneas de calor: visualización y análisis en problemas de transferencia de calor por convección en cavidades rectangulares (Heatlines: visualization and analysis of convection heat transfer problems in rectangular cavities), Cenidet, Cuernavaca Morelos, México, 2010.
  • 18. I. Hernández-López, Análisis de la transferencia de calor conjugada en un sistema solar pasivo de muro Trombe para calentamiento o ventilación (Analysis of the conjugate heat transfer in a solar passive system of Trombe wall for heating or ventilation), Cenidet, Cuernavaca Morelos, México, in process 2015.
  • 19. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York 1980.
  • 20. J.P. van Doormaal, G.D. Raithby, Enhancements of the SIMPLE method for predicting incompressible fluid flows, Numerical Heat Transfer, 7, 147–163, 1984.
  • 21. G. de Vahl Davis, Natural convection of air in a square cavity a benchmark numerical solution, International Journal of Numerical Methods in Fluids, 3, 249–264, 1983.
  • 22. T. Fusegi, J. Hyun, K. Kuwahara, Tree-dimensional simulations of natural convection in sidewall-heated cube, International Journal of Numerical Methods in Fluids, 3, 857–867, 1991.
  • 23. N. Markatos, K. Pericleus, Laminar and turbulent natural convection in an enclosed cavity, International Journal of Heat and Mass Transfer, 27, 755–772, 1984.
  • 24. G. Barakos, E. Mitsoulis, D. Assimacopoulos, Natural convection flow in a square cavity revisited: laminar and turbulent models with wall functions, International Journal of Numerical Methods in Fluids, 18, 695–719, 1994.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ce3ed6ee-631d-4e45-8307-8c290759a8bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.